CHAPTER

Numerical Methods in
Heat Conduction

8.1 Introduction

In chapter 3, we derived the general differential equation for heat conduction in cartesian, cylindrical and spheri-
cal coordinates. Subsequently, considering one-dimensional conduction, we solved these differential equations,
with appropriate boundary conditions, for cases of simple geometries such as a plane wall, cylinder and sphere
and obtained temperature distribution in those geometries; then, by applying Fourier's law, heat transfer rate
was obtained. The analytical solutions obtained for temperature distribution are known as ‘exact solutions” since
temperature at any point in the solid is obtained by applying the equations derived. While getting an exact
solution is always preferable, following points in connection with the analytical solutions must be noted:

(i) Analytical solutions are suitable for simple geometries such as a plane wall, cylinder or sphere, where the
surface of the body and the coordinate surfaces coincide, i.e. surfaces of a plane wall are completely
bounded by the coordinate surfaces of a cartesian coordinate system, surfaces of a cylinder and sphere
are completely bounded by a cylindrical and spherical coordinate system respectively.

(i) However, for irregular geometries, analytical solutions become difficult. For example, if there is a handle
on a cylindrical cup, finding out the temperature distribution in the system becomes very difficult or
impossible by analytical methods.

(iii) Further, even in simple geometries, if there is variation of thermal conductivity with temperature, or if
the heat transfer coefficient varies over the surface, or if there is radiation heat transfer involved at the
surfaces, severe non-linearities ate introduced and analytical solutions become highly complicated or
impossible.

(iv) Many times, analytical solutions, even if available for certain problems, are so complicated with the pres-
ence of infinite series, Bessel functions etc. that the user gets intimidated from using them.

In such cases, popular alternative method is ‘numerical sotution’. Here, the differential equation is substi-
tuted by a set of algebraic equations and simultaneous solution of these algebraic equations gives the tempera-
tures at selected, ‘discrete points’ in the system. So, the important difference to be noted is that while in an
analytical solution, temperature is obtained at any point in the body, in a numerical solution temperatures are
obtained only at selected, discrete points or ‘nodes’. By selecting these nodes close enough, sufficiently accurate
results are obtained.

Advantages of numerical methods are:

{i) easy to apply, with the availability of high speed computers

(ii} desired accuracy can be obtained by controlling the number of nodes or ‘mesh size’.

(ili) variation in area, thermal conductivity or heat transfer coefficients, and complicated boundary conditions
can be easily taken into account.

(iv) mathematical model for a numerical solution is more likely to be a better representative of the actual
system ’ ’



(v) parametric study to observe the effect of variation of different parameters on the solution, or ‘what-if’
analysis, is easier with numerical methods in conjunction with high speed compuiters.

Generally used numerical techniques are ‘finite difference’, ‘finite element’, ‘boundary element’ and ‘energy
balance or control volume’ methods. We will adopt energy balance method since it is intuitively easier to apply
energy balance on control volumes and does not involve complicated mathematical formulations.

In this chapter, we shall learn to formulate set of algebraic equations from the differential equations in
cartesian, cylindrical and spherical coordinates and solve them for one-dimensional, steady state conduction.
Then, we shall study the finite difference representation and solution of two-dimensional, steady state conduc-
tion problems. Since the numerical solution essentially involves solving a set of algebraic equations simultane-
ously, we shall study the different methods of solving simultaneous algebraic equations. Finally, numerical
solution of one-dimensional and two-dimensional transient conduction problems will be described.

8.2 Finite Difference Formulation from Differential Equations

As mentioned earlier, in this book, we shall formulate finite difference equations by making energy balance on
differential control volumes. However, as an introduction and as an example, for one case, let us obtain the finite
difference form of equation directly from the differential equation mathematically, starting with the definition of
first derivative and second derivatives.

Consider the governing equation for one-dimensional, steady state heat conduction with heat generation:

2
d°T(x) . q
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Now, le us divide the region 0 < x < L into M sub-regions. Then, size of each sub-region is:
L
Ax = — (8.2
M 8.2)

So, there are M + 1 nodes, starting from m = 0 to m = M, as shown in Fig. 8.1.

Coordinate of node m is x = m.Ax. and let temperature of node m be T,,..

Now, in Eq. 8.1, we need second derivative of T. To represent it in terms of finite differences, we proceed as
follows:

Consider locations (1 + %} and (m — %) as shown in Fig. 8.1. First derivative of temperature dT/dx at these
locations is written in terms of finite differences as:
(dT(x)} T+1 = T
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Then, the second derivative d°T/dx” at node m is approximated as:
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FIGURE 8.1 Finite difference representation of derivatives
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. dZT(x) Tm-l_z'Tn1+Tm+1 ,
1.e. = (84
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Substituting Eq. 8.4 in Eq. 8.1:

+ {Ax )2 A
k

where, g, is the energy generation rate at node m, and m=1,2, 3. M- 1

Eq. 8.5 is the finite difference form of representation of the differential equation given by Eq. 8.1. It is valid
for the ‘interior nodes” i.e. nodes 1, 2....M - 1. Since g,,, k and Ax are known guantities, Eq. 8.5 provides (m - 1}
simultaneous algebraic equations for temperature. But, there are M + 1 nodes, and we need two more equations
to solve M + 1 node temperatures; these two equations are obtained by finite difference representation of bound-
ary conditions at nodes m = 0 and m = M, as will be shown later.

Tw-1-2Ty+Tpi1) =0 ..(8.5)

8.3 Ome-dimensional, Steady State Heat Conduction in Cartesian Coordinates

Now, we shall develop the finite difference formulation using the ‘energy balance’ approach. In this method, the
medium in question is sub-divided into many sub-volumes; centre of each sub-volume is known as a ‘node’ and
each node represents the average properties of the sub-volume around it. Thus, at node “m’, temperature T, of
that node represents the average temperature of the sub-volume around node ‘nr’. It is imagined that these nodes
are connected to each other by ‘conducting rods’ i.e. in effect, the total volume is replaced by a network of nodes
with conducting rods. It is further assumed that temperature between adjacent nodes varies linearly.

Consider one-dimensional, steady state heat conduction in a plane wall of thickness L, with heat generation
rate 4,{x) and constant thermal conductivity k. Now, let us divide the region 0 < x <L into M sub-regions. Then,
thickness of each sub-region is:

Ax = L./ M. So, there are totally (M + 1) nodes, starting from m = 0 to m = M, as shown in Fig. 8.2. Coordinate
of node m is x = m.Ax. and let temperature of node m be T,,. Remembering that each node represents the sub-
volume around it {of thickness Ax), it is clear that interior nodes 1, 2...M — 1 represent full sub-volumes whereas
boundary nodes 0 and M represent half volumes (of thickness Ax/2}.

To get the difference equation for the interior nodes, let us write an energy balance for the volume element
represénted by node m. Assuming that all heat conduction is into the element, we can write, for steady state
conditions:

Rate of heat conduction from left + Rate of heat conduction from right + Rate of heat generation inside the
element = 0. ie.

Quet + Quight + G- A-Ax =0 ..{8.6)
where 4, is the heat generation rate per unit volume for sub-volume represented by node m (assumed constant
for the entire wall), A is the heat transfer area perpendicular to the direction of heat flow (constant for the wall},
and A. Ax is the volume of the element. Now, note that for a wall with heat generation, temperature distribution
is #tof linear. However, we make an approximation that the temperature variation between two nodes is linear;
and this assumption is valid for small values of Ax. So, writing the energy balance, with the direction of all heat
flow into the element,

Twm-1—-T T, -T
kA TTL M A Ml m + g, AAX =0 8.7
Ax Ax
G (A2)°
je. (T 1= 2Tt Ty ) + 20 =0 .(88)

where, g,, is the energy generation rate at node m, and m =123...M -1

Note that Eq. 8.8 is identical to Eq. 8.5 derived earlier mathematically by consideration of definition of first
and second derivatives.

Again, Eq. 8.8 is applicable only to M — 1 interior nodes; we will need two more equations to solve M
unknown node temperatures. These two equations are obtained by writing energy balance at the two boundary
nodes 0 and M.
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FIGURE 8.2 Finite difference formulation in o plane wall by energy bolance

It is convenient to assume while writing the energy balance, that all heat flows are towards the node in
question; the signs of heat flow adjust themselves when the set of coupled algebraic equations so obtained are
solved simultaneously.

Writing in terms of thermal resistances, Eq. 8.7 can be written as:

Tm—l "Tm ; Tm+1 _Tm

+ g, A-Ax =0 .{8.9)
RmAl,m Rm+l,m "

Ax .
where R, |, = (w] = thermal resistance between nodes m - 1 and m
m-1,m

Ax .
Ryvim= (—} = thermal resistance between nodes m + 1 and m
m+1,m

4, = energy generation rate at node m
A-Ax = volume of element about node m

Eg. 8.9 is more generai and allows for the variation of thermal conductivity and cross-sectional area with

position. When k and A are constants, Eq. (8.9) reduces to eqn. {8.8).

Boundary conditions:

Eg. 8.8 or 8.9 developed above are applicable to internal nodes. For nodes at the boundaries (i.e. for nodes 0 and
My}, difference equations are developed again by writing the energy balance for the volume elements containing
these nodes. While doing so, the boundary conditions prescribed in the problem must be taken into account.
Also, note that volume elements for nodes ‘0’ and ‘M’ for a plane wall are half-volumes as shown in Fig. 8.2.

Most commonly encountered boundary conditions are: prescribed temperature, prescribed heat flux, con-

vection and radiation boundary conditions.
(i) Prescribed temperatures at the boundaries This is the simplest of the boundary conditions. Let the tempera-
tures at x = 0 and x = L be given as T, and T, respectively. Then, T(s) = T, and T(L) = T, give the two additional
equations required to solve for M + 1 unknown node temperatures. In this case, there is no need to write energy
balance for volume elements at the boundaries, since the temperatures at the boundaries are known.

To develop finite difference equations for the other boundary conditions, we apply energy balance to the
volume elements of nodes at the boundaries, ie. nodes 0 and M (See Fig. 8.3). Remember that these volume
elements are only half volumes of thickness Ax/2, each. Also, while writing energy balance, consider all energy
flows as flowing into the element. Heat flux into the element is considered as positive and out of the element, it
is negative.

Then, energy balance for the volume element for nede ‘0° on the left boundary of the wall is given by:

- AA
Qe + katn=To) q(_— E} =0 ..{8.10)
Ax 2
Let us now apply Eq. 8.10 to get difference equations for boundary nodes ‘0" and ‘M
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FIGURE 8.3 Finite difference formulation for left boundary of a plane wall

(ii) Prescribed heat fiux at the boundarles Let g, and g,z be the heat flux at nodes ‘0" and ‘M’ respectively.
Then, from Eq. 8.10:

For node 0"
T~ T, AA
Gen-A + k-A-% + qo-(_—z-—xJ =0 (8.11)
2
Ax?g, 2Ax
ie. 27, - 2Ty + ¢ xl %o, A’; dieft _ o -(8.12)

For node ‘M’: Replace the subscript ‘0" by ‘M” and subscript ‘1" by ‘M - 1"

(Tp-1-Tm) AAx
right A + k-A- Ax + qM-( > ] =0 ..{8.13)
2, 2-Ax-g
ie. 2T, -2 Ty + XM fright _ (8.14)

k k
Eqgs. 8.12 and 8.14 are finite difference representation of the prescribed heat flux conditions at nodes ‘0" and
‘M’ respectively.
For insulated boundary condition and for a plane of thermal symmetry:
This is a special case of prescribed heat flux condition. Now, e = Grigne = 0. Then, Egs. 8.12 and 8.14 become:

2
2.7, -2-Ty + (;Af%_q_" =0 ~{(8.15)

Aax) gu
k
Eq. 8.15 and 8.16 for an insulated boundary or a plane of thermal symmetry can be obtained more easily by
applying the ‘mirror image concept’. In this simple method, the insulated boundary or the plane of thermal
symmetry is considered as a mirror. Thus, for the node ‘0, insulated left face becomes a mirror and reflects node
1; then, node ‘0" has the reflected node 1’ on its left and node ‘1’ on its right and we write the difference equation
as if the node ‘0" is an internal node. Then, applying Eq. 8.8 for an internal node, putting m = 0, we get:

2Ty 1~ 2Ty + =0 ..(8.16)

2
{Tm—]—z‘Tm+Tm+])+ _q{%:?)_ =0 (88)
Putm=0and T =Ty
2
ie. 2.7, 2Ty + T2 (i"—)— =0 ~(8.17)

Equation (8.17) is the same as eqn. (8.15).
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Similarly, for node ‘M, right hand surface which is insulated becomes the mirror and node ‘M - 1° is re-
flected further to the right of node ‘M’ and now, considering node ‘M’ as an internal node, Eq. 8.8 becomes:

(Ax)*
(Tm—'l - 2Tm + Tm-i l) + qm (k ) =0 (88)
Putm=M andM+1=M-1:
Ax)-
ie. 2Th =2 Thy + ( )k—q—M =0 ..(8.18)

Eq. 8.18 is the same as Eq. 8.16.

Thus, note that for an insulated boundary condition, or for a plane of thermal symmetry, it is very conven-
ient to use the ‘mirror image concept” and write the difference equation as if the boundary node is an internal
node.

(iii) Convection boundary condition Let the boundaries at x = 0 and x = L be subjected to convection to a fluid
at a temperature of T, with a heat transfer coefficient of 4.
Then, Eq. 8.10 becomes:

For node ‘0"
bAT~Ty + ko (LTD) +%_(A-ij o 519
Ax 2
2
ie. 27, 2Ty 14 AX) B3 | 24X .(8.20)
k k k
For node ‘M’; Replace the subscript ‘0’ by ‘M’ and subscript ‘1’ by ‘M - 1":
We get:
Tmo1—-T .
AT, = Ty) ka1 7T M-[A A"J -0 {8.21)
Ax 2
2
: Ax) 2-h-A
ie. 2-TM_1—2-TM{1+h?x) o x)k M, ; 1, -0 (8.22)

Eq. 8.20 and 8.22 are finite difference representations for convective boundary conditions at nodes ‘0" and
‘M’ respectively.
{iv} Radiation boundary condition Let the surrounding temperature be T, emissivity of the surface £, and g, the
Stefan— Boltzmann constant. Then, Eq. 8.10 becomes:
For node “0":

2
For node "M": Replace the subscript ‘0" by "M’ and subscript ‘1" by ‘M - 1":
We get:

oA (T -TH+ kA (T*A_ L 7o (A'Ax] =0 ..(8.23)
X

Tmo1-T, .
oA (TH-T\h) + kA2 ;x M +qM.(A AI] 0 .(8.24)

2
We generally try to aveid radiation boundary condition even with numerical methods, since as can be seen
easily from Eqgs. 8.23 and 8.24, finite difference equations now become highly non-linear and are difficult to solve.
(v} Combined convection and radiation boundary condition Let there be radiation as well as convection at the
surfaces, giving a combined heat transfer coefficient of k., and let the fluid temperature be T,. Then, Eq. 8.10
becomes:
For node ‘0"

hcomb'A'(Tl - TD) + kA (T]A_ TG) + qn[Azax) =0 (825)
X .
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, 4
ie 2T, - 2-T0-[1+ kmm:'“) + (Axl o z'h“’“,:b'Ax T,=0 (8.26)

For node ‘M": Replace the subscript ‘0" by ‘M’ and subscript ‘1" by ‘M - 1"

We get:
(Tag-1—Tm) .
hcomb'A'(Ta - TM) + kAL_'—]H“_ + QM[A ax =0 (8.27)
Ax 2
2
ie. 2-TM_1—2-TM-[1+ hcom:'“) + (Ax)k I, z'hcm;b"“ T,=0 {B.28)

(vi) Interface boundary condition With no contact resistance:
Node ‘m’ is at the interface between two solids in ‘perfect thermal contact’, i.e. there is no contact resistance and
both the surfaces are at the same temperature at the interface node “m’. This situation is shown in Fig. 8.4.

Interface
Gg
qA, m ’ .
Medium A Med;(um B
k ) B
2" Qe #Qright
. - - + * - . » x
D1 2 m-1tm |m+1
_H AX

fa—
Qi = KaA(T, -4 — Tp)Ax
Qrgnt = KgA(Tin 4 1 = T Ax

FIGURE 8.4 Finite difference formulation for inferface boundary condifion

So, the finite difference formulation for this boundary condition is given by:

T,._1-T, T -T, . .
mol ;x m kE}.A.ﬂ"‘+;x ™ s ,,,-(—AZMJ + qam-(“‘ ;xj =0 (8.29)
In the above relation, subscripts A and B refer to materials A and B, k is the thermal conductivity, ¢ is the
heat generation rate and A is the area of cross-section normal to the direction of heat flow,
With contact resistance:
If there is a contact resistance R, at the interface, we use the resistance concept to write the difference equation.
{See Eq. 8.9). Now, at the interface, there is a temperature drop. Let the temperature at the interface drop from T¢,
to Te,.
Then, we can write:

ki A

Tn-1-Tcy Tnv1-Tey A Ax A-Ax ‘
kyA——— + kg A ———— +qa +4qg m =0 .(8.30
A Ax g Ax q"'(z)‘“"[z) (630
And, temperature drop at the interface is calculated as:
R :
AT, = (Te, - Tey) = Q'”}f ..(831)

where ( is the heat flow rate through the interface (i.e. between nodes (m - 1) and (m + 1}) and (R./A) is the
interface thermal resistance.
Example B.). One face of a slab of thickness 1 cm (k = 20 W/(m()}, is maintained at 40°C and the other surface is
subjected to a convection heat transfer with a fluid at 100°C with a heat transfer coefficient of 4000 W /(m’C). There is
uniform internal heat generation in the slab at a rate of 8 x 107 W/m’. )
(a) Dividing the slab into 5 equally spaced sub-regions, find the temperatures at the different nodes. Assume one-
dimensional, steady state conduction.

NUMERICAL METHODS IN HEAT CONDUCTION




To' 7 nh ; T, T (b) If the left surface is insulated, what is the temperature on that sur-

TH—; X face in steady state?
£ 1 2 3 a4 5 Sclution.

Ax Data:

x=0 x=1 L:=001m M:=35 k =20 W/{mC) Ty:=  40°C
T,=100°C & :=4000 W/(mC)} 4,:= 8x 10" W/m?
FIGURE Example 8.1 Finite L 001
difference nodes for Example 8.1 Ax:= M5 ie Ax =0.002 m

Note that there are 6 nodes, numbered as: 0, 1, 2, 3, 4, and 5. Qut of these, nodes 0’ and ‘5" are boundary nodes and
the nodes 1, 2, 3 and 4 are internal nodes. Temperature of node ‘0’ is given, ie. Ty = 40°C, for the first part of the
problem.

Fig. Example 8.1 shows the schematic of finite difference nodes for this problem.

Apply Eq. 8.8 for interior nodes, 1, 2, 3 and 4:

{Aax)?
(Tm—]_z'Tm+Tm+l)+ s (k ) =0 (8.8)
(A x)
We have:; 32X (k ) =16
Node 0: Ty = 40°C (by data...(a))
Node 1: TZW=-2T,+T,+16=0 (b}
Node 2: T, -2T,+T;+16=0 (¢}
Node 3: T,-2T,+T,+16=0 ()
Node 4: T3-2T,+Ts+16=0 (e}
For Node 5: here, we have convection boundary condition. So, apply Eq. 8.22:
A Axy- K
2Ty - 2Ty |14 HAX ), A g 20h AY 1 _o (8.22)
k k k
Here, g, = g,
Then, for M = 5, we get:
2T, -28T;+16 +80 =0 (f)

Fq. a to f have to be solved simultaneously to get 6 nodal temperatures. Of course, in this case temperature at node
‘0" is already known.

We shall discuss the different methods of solving coupled algebraic equations, later. But, now, we will use ‘Solve
block’ of Mathcad to solve these 6 equations simultaneously. '

We start with assumed or trial values for all the variables i.e. for the temperatures at nodes 1 to 5. Then, in the solve
block, immediately below ‘Given’ write all the constraint equations. Then, the command ‘Find (T, Ty, T ... T5)" immedi-
ately gives a vector of temperature values:

Ty:=50 Ti=50 Ty:=50 Tyg=50 Tg =50 (trial values of temperakures)
Given T, = 40°C (by data...(a))
To-2T1+T,+16 =0 ..(b}
Ty-2T;+T;+16 =0 -.[(c)
Ty-2T,+Ty+16=0 ()
T3-2T,+Ts+16=0 (e}
2Tg-28T;+16 +80=0 wdf)
Temp: = Find(T,, T, Ty, Ta, Ty, Ts)  (Temp’ is the vector containing values of temperatures Ty, T, ... Ts)
Therefore,
40
93.333
130.667
Temp =
152
157.333
146.667
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i.e. Temperatures at different nodes are:

Tp=40°C T, =93333°C  T,=130667°C T,=152°C T, =15733C T;5= 146.667°C
To draw the temperature distribution:

In the above, temperatures at various nodes are contained in vector ‘Temp’. In Mathcad, elements of the vector are
generally counted starting from zero. ie. zeroth element of vector Temp gives value of T, = 40, element numbered 1
gives value of T; = 93,333, and so on.

To draw the graph, first we define a range variable i = 0 to 5. Then choose x-y graph from the graph pallete and on
the x-axis place holder fill up i and in the y-axis place holder fill up Temp;. Click anywhere outside the graph and
immediately the graph appears.

i=01..,5 (define the range varighble i, varying
from O to 5 with an increment of 1)

200

150

Temp; 100

50 —

i
FIGURE Example 8.1(b) Temperature at different nodes in the slab

In the Fig. Example 8.1 {b) ‘i is the node no. on the x-axis and on the y-axis, Temp;, the corresponding node
temperature is plotted.
(b} When left surface is insulated:
Now, the node ‘' is on an insulated boundary. Difference equation for node ‘0" is obtained now, treating it as an
internal node if the insulated surface is imagined to be a mirror i.e. node ‘1’ extends to the left of node ‘0" and Eq. 8.8 is
applicable.

ie. R A85)
{Ax)
For m=0: T_1A2vT0+T]+q-g—(k—)=0
From mirror image concept: T,=T,

Therefore, for node ‘0°, we get:
) 2T, - 2T, +16 =0 @)
Equations for other nodes remain unchanged.
Therefore, solving Eq. a’ alongwith b, ¢, d, e and f simultaneously will give the temperatures at nodes 0 to 5.
Use “solve block” ta solve the set of algebraic Egs. a’ to f simultaneously, in Mathcad. Start with assumed or trial
values of temperatures:

Te:=50 Ti=50 Tp=50 Ty=50 Ty=50 Ty =50 (trial values of temperatires)
Given

2T, -2Ty+16 =0 @)

Te—-2T,+T,+16=0 (b)

T,-2T;+T,+16 =0 ¢}

T,-2T;+Ty+16=0 .(d)

T;-2T,+Ts+16=0 e}

2.7T,-28Ts+16+80=0 )

Temp := Find(Ty Ty, T Ty, Ty s} (Temp’ is the vector containing values of temperatures Ty, Ty ... T5)
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Therefore,

500
492
468
428
372
300

Temp =

i.e. Temperatures at different nodes are:

Ty=500°C T, =492°C T, =468°C T;=428°C T, =372°C T, = 300°C

Let us compare these values with those obtained from analytical solution. Analytical solution to this problem is
easily obtained from the following mathematical formulation of the problem:

d*T(x) , BB

pp p =in0<x<l (egn. (h)...for a slab)
aT (x) =0 atx=9( ((i)...since insulpted)
dx
T
hA(Ts-T)=-kA- (%J wlj)...convection at the right surface, ie at x = L
X =1

Solving the above governing differential Eq. h with the boundary conditions i and jat x = 0 and x = L, we get the
following analytical solution for temperature distribution:

9s- I X : Gy L
T(x): = Tk [1_(IJ ]+ Tt T, k)

Then, temperatures at nodes ‘0’ to 5 are obtained by putting corresponding x values in T(x):

. Temperatures from Analytical solution Temperatures from numerical soluion
Nolde 0: Ti0) = 500°C Ty = 500°C
Node 1: T(0.002) = 492°C T, = 492°C
Node 2: T(0.004) = 468°C T, = 468°C
Node 3: T{0.006) = 428°C T; = 428°C
Node 4: T{0.008) = 372°C T, = 372°C
Nede 5: T{0.01) = 300°C Ts = 300°C

S0, we see that values of temperatures obtained by numerical methods match extremely well with the values ob-
tained by ‘exact’ analytical solution, i.e. even with only 5 equal divisions of the slab, we get very accurate solution by
numerical method. Hence its popularity.

Example 8.2. Consider a slab of thickness, L = 1 cm. Thermal conductivity of the slab material varies linearly with
temperature as: k(T) = 26.679 (1 + 8.621 x 107* T), W/(mC}, where T is in deg. C. Surface at x = 0 is insulated and the
other surface at x = L is subjected to a convection heat transfer with a fluid at 100°C with a heat transfer coefficient of
4000 W /(m?C).There is uniform internal heat generation in the slab at a rate of 8 x 107 W/m®. Dividing the slab into 5
equally spaced sub-regions, find the temperatures at the different nodes. Assume one-dimensional, steady state conduc-
tion.

Solution,

Data.

L:=00lm M:=5 KT = 266791 + 8.621 x 107*.T) W/(mC)

This is of the form:k(T) := ky{1 + #.T)
wherek;, := 26,679 W/ (mC) and, f:=8.621 x 107" 1/C T, = 100°C k := 4000 W/(m*C) g, =8 x 107 W/m'

Ax = L = o0 ie. Ax = 0.002 m

M 5

Note that there are 6 nodes, numbered as: 0, 1, 2, 3, 4, and 5. Qut of these, nodes ‘0’ and ‘5 are boundary nodes and
the nodes 1, 2, 3 and 4 are internal nodes.

Fig. Example 8.2 shows the schematic of finite difference nodes for this problem.
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Now, for the interior nodes, Eq. 8.8 is not applicable since the thermal conductivity varies with temperature.

Let us derive the difference equation for the interior nodes first. Consider any internal node ‘m’ and apply the
enérgy balance for the differential volume around node ‘m’. Remember to consider that all energy flows are into the
control volume. Using the thermal resistance concept, we get:

Tm—l_Tm T‘rrHl_Tw

Ax * Ax (A% =

To i+ T, Toi1 tTw

i T, " "
ie (Tm - Tm) kij [l"'ﬂ (__]E:‘_"]] + (Tm +17 m} k[) |:1 +ﬁ (%J] + l?m‘ml')z =0

s - (AX)?
b Ty 1~2Tpt T, + Bd@, 22T 0 (0 8 =020 )
2 k, a,
Egq. A gives the difference equation for the interior nodes 1, 2,
3, and 4. It is seen that this equation is non-linear and solving the Qe 4.._Qright
set of non-linear equations by conventional methods is difficult.

But, as we shall presently see, in Mathcad, it is very easy to get To Ta Tl T Tne1 Ts

solution using the ‘solve block”. - - - * » - X
c(axy 1 2 |3 |4 5
We have: g,, = q, and, CLI = 11.994
‘ . ko =0 -
In Eq, A, let us put m =1, 2, 3 and 4 to get the difference equa- x= Ax x=L

tions for the respective nodes: FIGURE Example 8.2 Finite difference nodes

for Example 8.2

Node 1: (T, — 2T, + T,) + E [T = 2-(TF + T,)%] + 11.994 = 0 .{b)
Node 2. (T, -2T, + Ty} + %"'[{Tl)2 ~2(T)% + T + 11994 =0 ()
Node 3: (To—2-Ty+ T + g-[(rz)2 — 24T+ TYH + 11.994 = 0 ()
Node 4: (T3—2-Ty + Ts) + g-[m)z S 2T+ T+ 11994 =0 ()

Difference equations for boundary nodes:
For node “0: Apply the energy balance to the half-volume around the node 07 2l heat lines flowing into the
volume,

There is no heat flowing from the left side of the cantrol volume into nede ‘0" since the surface is insulated. Writing
other terms, we get:

T, -T, A
5 +;;R-(A-Tx) =0
{n [1+ﬂ[T T H A]
ie. : (T, - Ty)-ky [1+ﬁ(T +TH+EX'(§—“—=0
ie. (I =T + iq-(T1 ~TH + _2(—?:—) 0
o
ie. (T, - To) + g-(rﬁ - TH) +5997 =0 -{a)

Eq. a is the difference equation for node ‘0", This equation is also a non-linear equation
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For node 5: Apply the energy balance to the half-volume around the node 5; all heat lines flowing into the volume.
There is convection condition on the right surface. Writing the energy balance, we get:

T,-T. Ax
4Ax5 +h'A(Tu—T5)+qg'(A"'2—J =0
|:kg'[1+ﬁ'(Mi]]‘AJ
2
. - X AA X))
i.e. (T4 _ TS) ¥ E _(Tf _ Tsz} . h (Ta T5) Ax + qg ( x) =0
2 k, 2-k,
ie. (Ty~-Ts) + Eﬂ -("1'"42 - TSZ) -03-Ts + 29986 + 5.997 = 0 {3

Eq. f is the difference equation for node 5. This equation is also non-linear.

Now, we have got 6 equations, namely Egs. a, b...f and there are 6 unknown node temperatures. So, solving these 6
coupled equations simultaneously, we get the temperatures Ty, T, ... T,

We use “solve block” of Mathcad to solve these equations.

We start with assumed or trial values for all the variables i.e. for the temperatures at nodes 0 to 5. Then, in the solve
block, immediately below ‘Given’ write all the constraint equations. Then, the conunand ‘Find (To, Ty, Ty ... T) immedi-
ately gives a vector of temperature values:

Tgi=50 Ty:=50 T,:=50 T3:=50 T,:=50 Ty:=50 (trial values of temperatures)
Given
(T, - Ty + g-m? + T+ 5997 =0 (a)
(Ty-2T) + Ty) + g"‘[(Tu)l - 2(T? + T + 11.994 = 0 ..(b)
_a. B 2 2,72 -
(T1 -2-T, + Ty + 5 AT = 2T + Ty + 11.994 = 0 )
(T;~ 2Ty + Tyh + g-[(TZ)E —2(Ty% + T)Y + 11994 =0 {d)
(Ty-2T,+T5) + g-[(n)z —2(TY% + T + 11994 = 0 (&)
(Ty-Ts) + g ATE-TH -0.3-Ts + 29986 + 5997 = 0 AP
Temp: = Find(T,, T}, Ty, T3, T, T5) (‘Temp” 15 the vector containing values of temperatures T, Ty, ... Ty)
Therefore, :
414.482
410.058
396.709
Temp =
374.203
342128
299.853

i.e. Temperatures at different nodes are:

T, = 414482°C T, = 410.058°C T, =.396.709°C T, = 374203°C T, = 342.128°C  Ts = 299.853°C

When there is no analytical solution to compare the results obtained by numerical methods, the number of sub-
divisions can be increased and the results obtained with the increased sub-divisions may be compared with the earlier
results; and this process may be continued till the difference between the successive results converges to a pre-deter-
mined accuracy. Better alternative is to make a heat balance check: In this case, since the left side is insulated, all the heat
generated in the slab must be dissipated at the right surface to the fluid by convection. Heat generated per 1 m? of area
={8x 107 x (1 x 0.01) = 8 x 10° W, and the heat transferred by convection from the right face to the fluid = #.A.AT = 4000
% 1 x (299.853 - 100) = 7.994 x 10° W; Le. heat generated = heat dissipated by convection.
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Exemple 3. A straight fin of rectangular cross-section has length L = 3 em, thickness ¢ = 0.5 cm and width w = 10 ecm.
Thermal conductivity of fin material, k = 20 W/(mC). Temperature at the base of the fin is Ty = 200°C and there is
negligible heat transfer from the tip of the fin. The fin dissipates heat from its surfaces into the surroundings at 25°C with
a heat transfer coefficient of 15 W/ (m2C). Using the finite difference method with 10 equally spaced sub-divisions, each
of length Ax = 0.3 cm, determine:

{a) temperatures at the nodes

{b) rate of heat transfer from the fin, and

(¢} fin efficiency

Solution.

Data.
| =003m w:=0lm t=0005m M=10 k:=20 W/(mC)  Tp:=2000C  Tp:=25°C
b= 15 W/(mIC)  Ac=wtie A, =5X% W*m?  Ax:= ﬁ:%:i ie. Ax = 0003 m

Note that there are 11 nodes, numbered as: 0, 1, 2,3, 4, .10, Out of these, nodes 0’ and 100 are boundary nodes
and the other nodes are internal nodes. Temperature of node ‘I is given, ie. Ty = 200°C.
Fig. Example 8.3 shows the schematic of finite difference nodes for this problem.

h =15 Wi(mC) \nsulated

T LTa =25°C

t=0.005m

FIGURE Example 8.3 Finite difference nodes for Example 8.3

Difference equations for internal nodes:

Consider a typical internal node “m’ and write an energy balance for the differential volume represented by node m’".
Remember that all heat flows are into the control volume. There is conduction from nodes (m — 1) and (m + 1) into node
m and also there is heat flow by convection from the ambient into the control volume:

T:nq'Tm Tosr =T
kAN—— +h A —— +h-((z-w+2-t)-Ax)-(T,,-T,,,):0
Ax Ax

v

Zk(w + t)'(Ax)z'(Tn _Tm)

ie. Tpo1 -2 T+ Tyt A =0 eqn. (A}
Eq. A gives the finite difference equation for the internal nodes, m = 1,2, .. 9.
We have:
2 .
Ty 1-2Tp+ Tpyr H’M{Lﬂiﬁ =0 .eqn. (A)
kA
Putting m = 1 etc.,
Node 1: T,-2-Ty+ T, - 2835 1073, + 0071 =0
Node Z: T, - 2T, + Ty~ 2835 x 107 T, + 0.071 = 0
Node 3: Ty—2-Ty+ Ty - 2835 % 1073.T, + 0.071 = 0
Node 4: Ty~ 2Ty + T5 - 2835 x 10737, + 0071 = 0
Node 5: T, - 2T, + Ty -2835x10°%T; + 0071 =0
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Node 6: Ts- 2T, + T, - 2835 % 107 T, + 0.071 = 0 (g

“Node 7: Te=2T,+ Ty~ 2835x 1077, + 0071 = 0 ~(h)
Node 8: Ty~ 2Ty + Ty - 2835 % 10T, + 0071 = 0 ()
Node:9: Tg= 2T+ Tyy - 2835 x WA T, + 0,071 = 0 i)

Difference JEquations for boundary nodes:

For node ‘0": By data, temperature of node ‘0" is the temperature of base surface:

ie. Ty = 200°C ..(a)
For node 10: Consider the half-velume surrounding node ‘10" and write the energy balance, with all heat flow lines

into the volume. Remember that heat flow from right of contrel volume into the node 10 is zero, since the surface is

considered as insulated:

T, T, Ax )
k.Ar-(g—A;ﬂ} + h~':(2-w+ 2-1)'7]'(Tu —Tp) =0

. . 2
ie. Ty-Ty + E%‘“_x’_ (T, =Ty} = 0
ie. Ty =Ty — 1418 x 1077, + 0.035 = 0 (k)

Egs. a to k give 10 equations for the 10 node temperatures. Solving these equations simultaneously, we get the node
temperatures.
We use ‘solve block’ of Mathead to solve these equations.
We start with assumed or trial values for all the varjables i.e. for the temperatures at nodes 0 to 10, Then, in the
solve block, immediately below ‘Given’ write all the constraint equations. Then, the command ‘Find (T, T}, T, ... The)'
" ~-immediately gives a vector of temperature values: . ;

Ty := 200 (by déta)
I,:=50 T,:=50 T,:=50 T,:=50 Ty5:=50 (trial values of temperatutes)
Te:=50 T,:=50 Tg:=50 T,:=50 Ty =50 {trial values of temperatures)
Given
To=200C -{a)
Ty-2T) + Ty~ 2835 x 10T, + 0071 = 0 w(b)
Ty —2T, + T3 2835 x 1073, + 0.07] = 0 <)
Ty-2T3+ T, - 2835 10T, + 0.071 = 0 Ad)
Ty3~2Ty + T5- 2835 x 10°*T, + 0.071 = 0 ()
T, - 275+ T,- 2835 x 10T, + 0071 = 0 A
Ts-2 T4+ T~ 2835 x 107 T, + 0.071 = 0 ()
Te-2T,+T4-2835 %107 T, + 0.071 =0 ~{h)
T~ 2Ty + Ty~ 2835 x 107 Ty + 0,071 = 0 i)
Tg~2Ty + T1y- 2835 x 107> T, + 0.071 = 0 ()
Tg-Typ— 1418 x 107> T, + 0.035 = 0 (k)
Temp = Find(Ty, T\, Ty, Ty, Ty, Ts, Ty, Ty, Ty, Ty, Ty (a)
Therefore, (Temp. is the vector containing values of temperatures Ty, T, .. Typ)
” ¢ j
0] 200
1| 195.707
27 191899
3| 188.563
1| 185.691
5| 183.274
Temp = .6 181.306
7] 179.78
8 | 178.6%4
| 9| 178.043
| 10 177.826
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i.c. Temperatures at different nodes are:

Ty = 200°C T, = 181.306°C
T, = 195.707°C T, = 179.78°C
T, = 191.899°C T, = 178.694°C
T, = 188.563°C T, = 178.043°C
T, = 185.691°C T, = 177.826°C
Ts = 183.274°C

Analytical solution: For the case of a fin, with an insulated end, analytical expression for temperature distribution along
the length is:

For fin: P:=2.w + 2- ..perimeter, and m = :/F\) ie.m = 17.748 1/m ..fin parameter
Ty =T, + (Ty - T,)- M (temperature distribn. in a fin with insulated end)
cosh{n-L)
Temperatures from Analytical solution Temperatures from numerical soluion

Node 0: T(0) = 200 Ty = 200°C

Node 1: T(0.003) = 195.706 T, = 195.707°C
Node 2: T(0.006) = 191.8% T, = 191.899°C
Node 3 T{0.009} = 188.559 T; = 188.563°C
Node 4 T{0.012) = 185.686 T, = 185.691°C
Node 5: T(0.015) = 183.269 T = 183.274°C
Node 6: T(0.018) = 181.3 T, = 181.306°C
Node 7: T(0.021} = 179.775 T, = 179.78°C

Node &: T{0.024) = 178.688 Tg = 178.694°C
Node 9: T(0.027) = 178.038 Ty = 178.043°C
Node 10: T(0.03) = 177.821 Ty = 177.826°C

We observe that values of temps. obtained by numerical methods match extremely well with the values obtained by
‘exact’ analytical solution, i.e. with only 10 equal divisions of the fin length, we get very accurate solution by numerical
method.

Heat transferred by the fin, Qg
Qj, must be equal to the amount of heat entering into the fin at its base.
Write the heat balance for the half-volume around node ‘0"

Ax
Qpn + e +h-(2-w+2-t)-7-(Tq—TU):0

Ax
ie. Qfini = %7 |~ h-(2-w + 2-#)~T(Ta -Tw

ie. Qg = 15137 W.

Fin efficiency, 7;:

Fin efficiency is the ratio of actual heat transferred by the fin to the maximum heat that would be transferred if the entire
fin surface were at the base temp.

- Qo
"
Qo = h@2w +2-0)-L(Ty-TY W (maximum heat transfer, if the entire fin were at base temperature)
ie. Quax = 16.538 W (maximum heat transfer by fin)
Therefore, Ny = i
Qﬂ'\d‘l "
i.e. 7y = 0.915 = 91.5% (fin efficiency)
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8.4 Methods of Solving a System of Simultaneous, Algebraic Equations

From what we have studied so far, it is clear that while solving steady state heat conduction problems by finite
difference formulation, we get a set of algebraic equations by applying the energy balance to the various nodes
and this set has to be solved simultaneously to obtain the temperatures at different nodes. There are many equa-
tion solvers and powerful software using which one can obtain the solution easily without knowing the intrica-
cies of the methods involved. While solving problems, you might have noticed that we used Mathcad, in which
solving even non-linear algebraic equations was extremely simple. Also, ready computer programs and sub-
routines are available for users, who have to simply change one or two lines of the program to adapt the solution
for their particular problem. For solving simultaneous, linear algebraic equations, subroutines such as LEQT1F,
LEQT1B, LEQT2F, LEQT2B supplied by the International Mathematical and Statistical Libraries (IMSL) have
been popular in scientific community.

SHL, it is worthwhile to know the basics of different methods involved in solving a set of algebraic equa-
tions. We shall briefly present a few methods:

(i} Relaxation method

(ii) Direct methods: (a) Gaussian elimination , and (b) Matrix inversion

(ili) Iterative methods, e.g. Gauss ~ Siedel iteration method

(i) Relaxation method This is basically a trial and error solution and does not require a computer. But, it is
practicable to use only when the number of equations is small, say, less than 10. As an example, consider a set of
following three algebraic equations:

apx+byy+cp-z=0

Ay X +byy+cyz =0

asX+byy+cyz=0

The coefficients a,, b, ..., c; etc. are known, and our aim is to solve this set for ¥, y and z. Then, the ‘Relaxa-

tion technique’ consists of the following steps:

{a) To start with, assume values for x, y and z.

(b) Since the assumed values are certainly likely to be in error, each of the above equations will not be zero,
but equal to some residual values R;, R, and Ry

ayx+ b y+cz=R
apx+byy+cpz=R,
3%+ byy + 032 = Ry

{c) Our aim is to reduce Ry, R, and R, to zero by suitably varying the assumed values of x, ¥ and z, by trial
and error. This is done systematically, by first setting up a ‘unit change table’, i.e. a table showing the
change in the values of residuals for unit change in x, y and =

(d} Set up a ‘Relaxation table” wherein you begin with the initially assumed values of x, y and z and the
resultant residuals. Then, start ‘relaxing’ the largest residual by suitably changing the value of x, yorz,
taking guidance from the ‘unit table’ already set up.

{e) Continue the procedure till ail the residuals are relaxed to zero.

Obviously, this procedure is slow and time consuming and cannot be used when the number of equations to
be solved is large.
(ii} Direct methods  Direct methods have a fixed number of well defined steps to systematically solve the equa-
tions for the unknown values. However, they consume more of computer memory and time compared to itera-
tive methods, and are suitable for comparatively small number of equations. Under ‘direct methods’, we shall
study two methods: {a) Gaussian elimination method, and (b) Matrix inversion method:

(a) Gaussian elimination method In this method, used for solution of a system of linear algebraic equa-
tions, one of the unknowns is eliminated systematically in each step, and at the end of the elimination
process, the last equation involves only one unknown, and then the remaining unknowns are obtained
one by one by ‘back substitution’. To make the process clear, let us consider a simple system of three
algebraic equations, as given below:

x+2y+3z2=33 ..{a)
x—4y+z=-11 ...(b}
3x+y+z=18 N (y)

Now, we “triangularize’ the given set of equations by repeated application of three basic row operations:
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{i) multiplication of a row by a constant (ii} adding one row to another row, and (iii) interchange of two
rOWS. . : ‘ :

In the above, use Eq. a to elimlnate x from Egs. b and ¢, by adding -1 times (a) to (b) and by adding -3
times {(a) to (). We get:

x+2y+32=33 ..a@n

6y-2z=44 ..(b)

-5y-8-z=81 (]

Next, eliminate y from Eq. ¢’ by multiplying Eq. b’ by -5/6 and adding to Eq. ¢
We get:
Xx+2y+3z=33
6y+2z=44
z=7

(b}

Above set of equations is known as ‘triangularized set’ of equations.

Having obtained the value of z, now back-substitute in the previous equations to get value of y as y =5,
and one more ‘back-substitution’ in the preceding equation gives the value of x as x = 2.

Since we had only three equations in the above set, we could do the elimination or triangularization by
hand. However, Gaussian elimination method for a system of large number of equations is done with a
computer, using matrix notation to represent the equation. Coefficients constitute a square matrix called

“‘coefficient matrix’ and the constant terms are stored in a vector called ‘right hand side vector’. Compu-

tation sub-routines normally combine these two into a single ‘augmented matrix’ and the above proce-
dure is done by the computer program to eliminate the terms below the main diagonal of the augmented
matrix. This results in a matrix of ‘upper diagonal form’. Then, back-substitution is performed by the
program systematically to get the solution.

So, for example, in the above set of equations, the augmented matrix will be:

1 2 3 33
1 -4 1 -11
31 1 18

Now, resorting to already mentioned row operations on this matrix, elements under the main diagonal
are eliminated and the upper diagonal form of the matrix is obtained as:

1 23 33
0 6 2 44
o001 7

Last row means that z = 7. Now, back-substitution is done to get values of y and x. Gaussian elimination
method is conveniently programmed in a computer and ready subroutines are available to solve a set of
N linear algebraic equations simultaneously.
Matrix inversion method In this method, the set of equations is written in the following matrix formu:
[A] [T] = [B], where

[A] is the coefficient matrix, [T] is the vector of temperatures to be found out, and [B] is the vector of
constants (RHS) of the equations. Solution of this system by matrix inversion method is given by:

[T] = [A]" [B], where [A]™ is the inverse of matrix {A].
Matrix inversion is performed generally by using readily available computer subroutines. In Mathcad,
inverse of a matrix A is obtained in a single step by the command A=
For the problem illustrated above, we have:

1 2 3 33
A=|1 -4 1| B=|~-11
31 1 18
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and,

-5 1 7
38 38 19
Al o 1 ;4 1 (inverse of A, from Mathcad)
19 19 19
13 5 -3
38 38 19
Therefore,
T:=A"B (T is the veclor containing x, y, z as its elements)
2
ie T=|5
7

which means that x =2, y =5and z = 7.
This result is the same as obtained earlier.
Once again, when the number of equations is relatively large, this is not a preferred method, from the
point of view of computer memory and storage.
(iii) Gauss—Siedel iteration method Iteration methods are used when the number of algebraic equations to be
solved is relatively large. Gauss-Siedel iteration (also called Liebmann iteration) method is one of the most popu-
lar iteration methods because of its simplicity. The method involves the following steps:
(a) Solve each equation for one of the unknowns, i.e, write each unknown in terms of other unknowns
(b} Assume guess values for all unknowns, and from the equations developed in step (a), compute the un-
knowns, each time using the most recently computed values for the unknowns in each equation
{c) Repeat this procedure until the successive values of an unknown converge to a specified accuracy.
To illustrate this procedure, let us consider the example given below. We have a set of equations as follows:

3x-y+3z=0 (a)
-x+2y+z=3 ..(b)
2a-y-z=2 Ao
Now, write each equation for one of the unknowns. i.e,
e ¥23E
3
_(B+x-2)
YT

2=-24+2x-y
Now, assume guess values for x, ¥ and z. Say, x = 1, y = 1 and, z = 1. These are the "zeroth’ iteration values.
With these guess values, begin the iteration and in each equation, use the latest values of unknowns as
available. 5o, after ‘first’ iteration we have:

x=1 y=1 z=1 (inital guess values)
y-3z ) ,
X = 5 ie. x =—0.667 (withy=1,z=1)
(3+x-2) . .
= f ie. v = 0667 (with x = - 0.667, z = 1}

z=-2+2x-y ie. z=-4 . . .with x =~ 0.667, y = 0.667
Now, for the ‘second’ iteration, continue the procedure, with the latest values of unknowns. We get:

x=-0667 y=0667 z=-4 (next guess values from previous iteration)
+ 3
X = y—% ie. X =4.222 (with y = 0.667, z = - 4)
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_(3+x-2z)
2

z=-2+2x-vyie z = 0.833 (with x = 4.222, y = 5.611)

For the “third’ iteration, take x = 4.222, y = 5.611 and z = 0.833, and continue. This process is programmed

easily in a computer and the results normally converge within about 100 iterations. Of course, we can also in-

struct the program to stop when the difference between successive values of unknowns converge to a pre-deter-

mined accuracy.

A simple Mathcad program to perform the above iteration is shown below. It does the iteration 100 times.

Final values of x, y and z are returned as a vector R.

ie. y = 5611 (withx =4.222,z=-4)

Ri=]xp 1
Yo <1
zp«1
forie.. 100
3o
xi+l(_y; 3 :
B+x41-3%)
L

Zip1 (24 2 X541 — Vi 1)

Xiv1
Yisa

Zit1

And, R=|3
-1

which means that x =2,y =3 and z = -1.

In the above program, LHS defines a vector R. On the RHS, there are 10 lines. First three lines assign the
initial guess values for x, y and z. Next 4 lines show the ‘for loop’, for 100 iterations, where in x, ¥ and z are
calculated, each time using the latest available values of unknowns. Next 3 lines constitute the latest values of x,
y and z which are stored as the elements of the vector R.

It is interesting to note that in the above program, if iteration is carried out only for 5, 10, 20, 50 and 100
loops (by changing the 4™ line), following are the results:

After 5 After 10 After 20 After 50 After 100

iterations iterations iterations iterations iterations
1.755 1987 2 2 2

R=| 2718 R=1|2982 R=1|3 R=13 R=13
~1.208 -1.008 -1 -1 -1

i.e. even with only 10 iterations we are very close to the final result. By the time 20 iterations are over,
solution has already converged to the final result.

It is stated that for steady state heat conduction problems, Gauss-Siedel iteration process is inherently stable
and always converges into a solution.
Note: Of course, above program can be further refined to stop when the successive values of x, y and z differ by
a pre-determined small value £. (say, £ = 0.001).
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Above program in Mathcad is shown only to illustrate the procedure of iterative solution. While actually
using Mathcad, we would use the ‘solve block’ (which also follows an iterative algorithm), as follows:

x:=0 yi=0 z:= 0 (guess values)
Given
3x-y+3z=0 (@)
-x+2y+z=3 .(b)
2x-y-z= (4]
2
Find (x, y, z) = | 3
1

You may put any guess value to start with; it makes no difference on the final result. However, it is essential
that each unknown is assigned some guess value to start with,
Accuracy of the solutions Some comments on the accuracy of finite difference solutions are appropriate. We
noted earlier that in solving heat conduction problems by finite difference methods, accuracy improves as the
number of nodes is made larger. However, this would mean that a larger number of algebraic equations have to
be solved simultaneously. This situation has following inherent drawbacks: the computer memory required in-
creases and also, more importantly, the round off errors in successive calculations increase since they are cumu-
lative. Therefore, one should start with a coarse mesh and then gradually refine it depending upon the accuracy
of final results required. Note that for the normal problems encountered in practice, a coarse mesh generally
gives results of acceptable accuracy; remember that, anyway, there are uncertainties in the values of thermal
properties and heat transfer coefficients available to the designer.

8.5 One-dimensional, Steady State Conduction in Cylindrical Systems

We shall now develop finite difference formulation by energy balance method, for one-dimensional, steady state
heat conduction in cylindrical coordinates.

Consider a long, solid cylinder of radius R in which the heat flow is only in the radial direction. Let the rate
of internal heat generation be qg(W/ms). The region from r = 0 to r = R is divided into M sub-regions, each of
thickness Ar = R/M. Therefore, there are

(M + 1) nodes, numbered as 0, 1, 2, ..., M. See Fig. 8.5.

Writing an energy balance for the volume element around node ‘m’, remembering that all heat flows are into
the volume, we get; in steady state:

Rate of energy flowing into the volume from left + Rate of energy flowing into the volume from right + Rate
of heat generated in the volume = 0.

Substituting the values,

T 1Ty Tpi1=Th

A7 + AT +(2-mm-Ar-Ary-Lg, =0

Z-z-[m-Ar—%—r]-L-k 2-!{-(m-Ar+ %‘)-L-k

First term in the above equation is the heat flowing into node ‘m’ from node ‘(m - 1)". Denominator of the
first term is the thermal resistance between ‘m’ and *(m - 1)’; it is written in the form {L/k A) where A is the mean
area i.e. area of the plane mid-way between nodes " and ‘(m — 1), This form of thermal resistance (as if for a
plane wall), is alright for the cylindrical system when Ar << R, which is generally the case. Also, this makes the
equation simpler. Similarly, the second term in the above equation is the heat flowing into node ‘m’ from node
‘(m + 1)". The third term gives the heat generated in the elemental volume. L is the length of the cylinder and g,,
is the heat generation rate per unit volume for the elemental volume (= Tor generally).

Simplifying the above equation, we get:

2
1= |7y —27 (1, B L83
2m 2m k

Eq. 8.32 is the finite difference equation for internal nodes i.e. for nodes 1, 2, ...,(M - 1), with constant
thermal conductivity and internal heat generation. C
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FIGURE 8.5 Finite difference formulation in a eylindrical/spherical system

At the centre: ie. atr =0 _
Writing the energy balance for the half-volume {of thickness Ar/2} around node 0", we get:

2
Tl —TD Ar
—Igt x-[-:?_] Lgy=0

2

In the above, first term is the heat conduction rate from node 1" to node ‘0’ and the second term is the heat
generation term. 4, is the heat generation rate per unit volume at node ‘0 (= q,, generally). Simplifying the above
equation, we get:

2
4(T, — To) + %ﬁﬂ =0 ..(8.33)

Eq. 8.33 gives the finite difference equation for the centre node ‘0, with constant thermal conductivity and
internal heat generation.
At the periphery: Le. at node "M"
As in the earlier cases, here too, finite difference equation is obtained by applying the energy balance to the half-
volume around node ‘M’. Of course, the nature of equation depends on the boundary condition, i.e. if it is pre-
scribed temperature, or prescribed heat flux or convection boundary condition. For convection boundary
conditions, where heat transfer from the periphery is with an ambient at temperature T, with a heat transfer
coefficient of h, energy balance around node ‘M’, gives:

Trh—1—Tm
Ar

2w (ar- )i

A
@ mMARL) BT, - Ty + Z-E-M-Ar-EE-L-qM =0

In the above, first term is the heat conduction rate from node ‘(M - 1Y to node "M’ and the second term is the
convective heat transfer between the periphery and the ambient, and the third term is the heat generation term.
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gu Is the heat generation rate per unit volume at node ‘M’ ( = g, generally). Simplifying the above equation, we
get:

1 1 Ar-h Ar-h (Ar)z-qM
1-— |y -1 |2 A28 g T =0 (834
( 2-M) M-1 H Z-M] K } MITTT et T (539

Eg. 8.34 gives the finite difference equation for the boundary node ‘M, with convection conditions, constant
thermal conductivity and internai heat generation.
Example 8.4. A nuclear fuel element is in the form of a hollow cylinder insulated at the inner surface. Its inner and outer
radii are 5 em and 10 cm respectively. The outer surface gives heat to a fluid at 50°C where the unit surface conductance
is 100 W/(m?K). k of the material is 50 W /(mK). Dividing the shell into 5 equal sub-regions, find the temperatures at
different nodes. What is the maximum temperature in the
system? Given: Rate of heat generation in the fuel element
k = 50 W/(mK) is 3.796 x 10° W/m®.
g, = 3.796 x 10° wim® Solutisn. See Fig. Example 8.4 (a),
Data:
V% T,=7 r=005m  r,=01m k=50 W/mK
T,:=50°C h=100W/(m’K) L=1m
gy = 3796 x 10" W/m® M= 10

[—
Ar= 2T je Ar=001
\ /ha=100W/(m2K) TETEoted o

\ T,=50"C Fig. 8.4 (b} shows the schematic for finite difference
\ representation:

Note: Temperature on inner surface is the maximum
temperature since inner surface is insulated.

Here, nodes 5 and 10 are boundary nodes and nodes 6, 7, 8
and 9 are internal nodes. Node 5 is on the insulated surface
| and node 10 is on the outer surface with convection bound-

ary condition. By this system of numbering, r coordinate of
FIGURE Example 8.4(a} Holiow cylinder with heat  node “m* is m.Ar and M = 10 = no. of subdivisions in the

generakion, losing heat on outer surface by convection, outer radius.
inner surface insulated Finite difference equations for internal nodes:
ie. for nodes 6 to 9, we can apply Eq. 8.32, viz.

Insulated - \

=0.05m

'

»

rR=01m

Volume element of node ‘nr’

Cylinder

m 7 dAfii 10H

— Arf2

r;=0.05m
r=0 ro=0.1m r=R

FIGURE Example 8.4{b) Finite difference formulation in a cylindrical system
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Putting m = 6....9, in the above equation we get difference equations for those respective nodes:

m = 6: 0.917-Tg - 2-T, + 1.083-T; + 0.759 = 0 (b}
m=7: 0.929-T, - 2-T + 1.071- T + 0.759 = 0 0)
m =8 0,938-T, — 2Ty + 1.063- T + 0.759 = 0 Ad)
m=9: 0.944.T, - 2-Ty + 1.056- Ty + 0759 = 0 e

Finite difference equations for boundary nodes:
For node 5 Temperature on the insulated surface is maximum. Difference equation for node 5 is obtained by writing
heat balance on the half-volume around node 5, with all the heat flow lines going mto the volume. From the left there is
no heat flow since the surface is insulated. So, there is heal flow only from right and there is heat generation term:

i T, - T AT ?
Le. —»——"’A—r_5—*—— + x-[[S-Ar+T) h(S-Ar)Z}L-qR =0
2-7r-(5-Ar+92L}-L‘k

In the above equation first term gives the heat flow into the half-velume and the second term is the heat generation
term for the half-volume.
Simplifying, we get:

2
Ts - Ts)-[2~fr-(5-br+52—r]-k] + Ar-nl\:(S-Ar+92L] —(5'Ar)2}t‘1‘3 =0

ie. (T~ T5):17.279 + 6261 =0 ..(a)

For node 10 We can use Eq. 8.34 but, in this case, we can straightaway get the temperature at node 10 by a heat
balance at the outer surface, as follows: _

All heat generated in the shell goes to the outer surface since the inner surface is insulated. Writing the heat balance
at the outer surface,

Heat generation in the chell = heat transferred by convection at the outer surface

ie. a2 = 1) Lgy = b @7 L) (T - T
x(rF -rH L
i.e. Ty = _,_(___)—qf’— + T,
B{2-7T, L)
ie. T, = 192.35°C ..eqn. (£ .temperature at node 10

Now, we have 6 equations a to f. Solving them simultaneously, we get temperatures at 6 nodes, L.e. nodes 5 to 10.

We use ‘solve block’ of Mathcad to solve this set of equations. Start with guess values for all unknown temperatures
and immediately below ‘Giver', type the constraint equations. Then, the command ‘Find (Ts, .., Typ)’ gives the tempera-
tures immediately:

T,=50 Ta=50 Tyi= 50 Ty:=50 Tyi=50 Tyi= 192.35 (guess values of temperatures)
Given
(T, - T5)-17.279 + 6261 =0 @)
0.917.Tg - 2Tg + 1.083-T; + 0.759 =0 {b)
0929-T, - 2:T7 + LO71-Ty + 0759 = 0 o)
0938, 2T, + 1.063-Ty + 0.759 = 0 {d
0.944-T, - 2-Ty + 1.056-Tyq + 0759 =0 Ae)
T,y = 192.35 D
Temp. = Find(Ts T To, Tar Tor T1o} {define vector Temperature in which node temps. are stored)
200.371
200.008
T B 199.001
Therefore, emp = | 41g )
196.122
192.35
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i.e. The temperatures at different nodes are:

T =200371°C T, = 200008°C T, = 199.001°C Ty = 197418°C T, = 195122°C Ty, = 192.35°C
Check: We can check these results with the analytical solution. This is a problem of a cylindrical shell with the inside
surface insulated and outside surface losing heat by convection; in that case, temperature distribution is given by:

L ‘?g'("uz*’iz) 9,170 | r, : A P
T(r): = Ta+w+ﬂ_. T, —Z'h'l(?)— :, -(5.29)

(Analytical solution for temperature distribution)

Substitute different values for r and get temperatures at corresponding nodes:

Analytical solution Numerical soluion with 5 nodes
Node 5: T(0.05) = 200.007 Ts = 200.371°C
Node é: T(0.06) = 199.649 T, = 200.008°C
Node 7: T(0.07) = 198.645 Ty = 199.001°C
Node 8§: T(0.08) = 197.065 Ty = 195.418°C
Node % T{0.09) = 194.956 Ty = 195.122°C
Node 10: T(0.1) = 19235 Tp = 192.35°C

Just for comparison, if the shell is divided into 10 nodes, (numbered from 10 to 20), each of radial thickness 0.005
m, following will be the result, in comparison to the analytical results:

2 2 2 2
Tt = I:T +M + M[(T_DJ —2.111(’_“] _[l) :” (Analytical solution for temperature distribution)
? 2-hr, 4-k T r r
Substitute for r and get temperatures at different nodes:
Analytical solution Numerical soluion with 10 nodes

Node 10: T(0.05) = 200.007 200.024°C
Node 11: T(0.055} = 199.915 199.931°C
Node 12: T{0.06) = 199.649 199.665°C
Node 13: T{0.065) = 199.223 199.237°C
Node 14: T(0.07) = 198.645 198.658°C
Node 15: T(0.075) = 197.924 197.936°C
Node 16: T{0.08) = 197.065 197.076°C
Node 17: T{0.085) = 196.075 196.083°C
Node 18: T(0.09) = 194.956 194.962°C
Node 1%: T({0.095) = 193.714 193.717°C
Node 20: T(0.01) = 192.35 192.35°C

It may be noted that the values by finite difference methods match extremely well with the analytical results.

8.6 One-dimensional, Steady State Conduction in Spherical Systems
We shall now develop finite difference formulation by energy balance method, for one-dimensional, steady state
heat conduction in spherical coordinates.

Consider a solid sphere of radius R in which the heat flow is only in the radial direction. Let the rate of
internal heat generation be q, (W/ m’). The region from 7 = 0 to 7 = R is divided into M sub-regions, each of
thickness Ar = R/M. Therefore, there are (M + 1) nodes, numbered as 0, 1, 2, ..., M. See Fig. 85,

Writing an energy balance for the volume element around node ‘nt’, remembering that all heat flows are into
the volume, we get; in steady state:

Rate of energy flowing into the volume from left + Rate of energy flowing into the volume from right + Rate
of heat generated in the volume = (.

Substituting the values,

Tmfl—Tm Tm+1—Tm

. 3 . N 2 . =
A7 + AT + [4- 7 (mAr)Ar]g, =0 .-{(8.35)

2 2
4-k-(m-Ar—é2£J -k 4-%‘-("1-,&1‘4—%] -k
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First term in the above equation is the heat flowing into node ‘m’ from node "(m - 1)’. Denominator of the
first term is the thermal resistance between ‘m’ and ‘(1 ~ 1Y'; it is written in the form (L/kA) where A is the mean
area ie. area of the plane mid-way between nodes ‘m’ and ‘(m - 1)'. This form of thermal resistance (as if for a
plane wall), is alright for the spherical system when Ar << R, which is generally the case. Also, it makes the
equation simpler. Similarly, the second term in the above equation is the heat flowing into node ‘m’ from node
‘(m + 1. The third term gives the heat generated in the elemental volume. 4,, is the heat generation rate per unit
volume for the elemental volume (= g,, generally).

Simplifying the above equation, we get:

2 2 2
[1-_1 ]'(Tm-l—TmV[H 1 } (Tyur=T,y+ & m g (8.36)
2-m 2-m k

Eq. (8.36) gives finite difference equations for internal nodes, i.e. nodes 1, 2, ..., (M - 1).
At the centre, 7 = (:
Applying the energy balance to the half-volume around node ‘0,

Tl_TO 4 (AT]3
_— g — | - =0
2 do

Ar 3
2
4-1-(9—]’) -k
2
Simplifying,
2 .
6T, ~ To) + A" gq _ 0 ...(8.37)

k

Eq. 8.37 gives finite difference equation for the centre i.e. node 0",
For the boundary node ‘M":
Difference equation for boundary node ‘M’ is written in the same manner as was done for other nodes, i.e. by
writing an energy balance on the half-volume around node ‘M. The nature of relation obtained will depend
upon the boundary condition i.e. prescribed temperature, prescribed heat flux, or convection boundary condi-
tion.

As an example, let us write the difference equation for node ‘M’ when the convection conditions prevail at
the boundary. Let there be heat transfer at the boundary with a fluid flowing at a temperature of T, with a heat
transfer coefficient of i, Then, writing an energy balance for the half-volume around node "M’, we get:

Trm-1-Tm
Ar

2
P —"

In the above, first term is the heat conduction rate from nede ‘(M - 1)’ to node ‘M’ and the second term is the
convective heat transfer between the outer surface and the ambient, and the third term is the heat generation
term. g, is the heat generation rate per unit volume at node "M’ (= 7,, generally). Simplifying the above equation,
we get:

+ 42 (MANZR(T, - Ty + 4-3—(M-Ar)2-~’52—r gy =0 ..(8.38)

2 2
1 1 Ar-h Ar-h (AN -gum
1-——| -T -||1-— + -T, T+ ——= =0 ..(8.39
[ 2-M] M- ( 2-M] kMR T Tk ©39)

Eq. 8.39 gives the difference equation for the boundary node ‘M’ when convection conditions prevail at the
boundary.
Example 8.5. A solid sphere of radius, R = 10 mm and k = 18 W/(mC) has an uniform heat generation rate of 2 x 10° W/
m®. Heat is conducted away at its outer surface to ambient air at 20°C by convection, with a heat transfer coefficient of
2000 W/(mZC). Using numerical method and dividing the radius into 10 equal sub-divisions,
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2 (i) deternine the steady state temperature at the centre and outer
k=18 WHmC), g, = 2000 W/m surface of the sphere,
Q (ii) draw the temperature profile along the radius.
Soluflen. L.t us now solve this problem numerically, dividing the ra-
dius into 10 equal sub-divisions, i.e. M = 10. So, there are 11 nodes,

T. =20°C marked as 0, 1, verg 10.
e -
hy=25WmC) D3t ,
R:=001m  h,:=2000 W/(mK)  k:= 18 W/(mK)
T

T,=200C  g,:=2x10°W/m®> M:=10 Ar:=000l m
Refer to Fig. 8.5 for finite difference scheme of nodes for this prob-
w lem.
Node ‘0" is the centre node, and nede “10” is the boundary node.
FIGURE Example 8.5 Solid sphere with Nodes 1, 2, ..., 9 are the internal nodes. There is convection condition at

heat generafion the boundary.
For internal nodes 1, 2...,9: We apply Eq. 8.36 for internal nodes:

2 2 )
[1—L} (T, =T,)+ [1+L] (T =Ty + B e .{8.36)
2-m 2-m k
Putting m = 1, 2,...9, we get difference equations for those respective nodes:
m = 1, Node 1: 0.25.(T, - T)) + 2.25-(T, = T,) + 0.111 = 0 .(b)
m =2, Node 2: 0.563-(T) - Ty) + 1563 (T = T} + 0.111 = 0 o)
m =3, Node % 0.694(T; - T3) + 1.361-(T, — Ty) + 0111 = 0 Ad)
m = 4, Node 4: 0.766-(Ty — Ty) + 1.266-(T5 - Ty + 0.111 =0 -(e)
m = 5, Node 5: 081(T, - Ts) + 1.21-(Ty - Ts) + 0111 = 0 AR
m = 6, Node 6: 0.84-(Ts - Tg) + 1.174-(T, - T} + 0111 = 0 (g
m =7, Node 7: 0.862(T; - T,) + 1.148-(T; = T;) + 0.111 =0 (h)
m = 8, Node 8: 0.879-(T; - Tg) + 1.129-(Ty = Tg) + 0.11 =0 ()
m = 9, Node 9 0.892-(Ty - Ty) + L114-(Tyy - Tg) + 011 = 0 _..(j)
For centre node ‘0": Apply Eq. 8.37: '
2
6-(T, - Ty) + (i’%‘?—“ =0 (837
i.e. 6T, - Ty) + 0111 = 0 {a)

For boundary node 10: Since there is convection condition at the surface, Eq. 8.39 can be applied. However, in this
problem, since all the heat generated in the sphere has to be dissipated at the surface by convection, we can make an
energy balance at the surface and get the temperature at node 10 directly:

Making an energy balance at the surface of the sphere,

§<7r»R3~qg = hy(4-mRY-(Ty - T

4

3 T Ra-qg
ie. Tlﬂ = Tu + mR—z) (deﬁne TlO)
T, = 23.333°C (k)

5o, now we have 11 Egs. a to k for 11 node temperatures T, to T}, and by sclving these equations simultaneously,
we get the temperatures at the different nodes.

We use "solve block” of Mathcad to solve this set of equations. Start with guess values for all unknown temperatures
and immediately below ‘Given’, type the constraint equations. Then, the command ‘Find (T,..T}y)’ gives the tempera-
tures immediately:

Ty=50 T,:=50 T;:=50 Ty:=50

To:=50 Tg:=50 T;:=50 Ty:=50 Ty:=50 T:=23333 (guess values of temperatures)
Given

6 (T, - T+ 0111 =0 ..(a)

025:(Ty—T) +225:(T, - T} + 0111 = 0 -.{b}

0.563-(T) = Ty) + 1.563-(T; -~ T5) + 0,111 = 0 <)

0.694-(T; - T3) + 1.361(T, - T3) + 0.111 = 0 wfd)
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0.766 (T, — Ty) + 1.266-(T5 — T) + 0.111 = 0 Ae)

0.81-(T, - Ts) + 1.21(T, - Tg) + 0.111 = 0 N0
0.84-(Ts ~ Tg) + 1174-(T, ~ Tg) + 0.111 = 0 )
0.862-(T, — Ty} + 1.148-(Ty - T;) + 0111 = 0 (h)
0.879-(T, - Ty) + 1.129(T, = Ty) +0.11 =0 (i)
0.892-(T - To) + 1.114:(Tyy = Tg) + 0.11 = 0 )
T, = 23.333°C . (k)

Temp: = Find(Ty, T}, Ty Ty Ta Ts, Te T Ty T, Tig)

Le.
Y 23.333

i.e. the node temperatures are: corresponding radius at the nodes
Ty := 25.163°C rady:= 0.0 m
T, := 25.144°C ) rad, := 0.001 m
T, = 25.093°C rad, := 0.002 m
Ty = 25.003°C rad; := 0.003 m
T, = 24.876°C rad, == 0,004 m
Ts:= 24.712°C radg ;= 0.005 m
T, = 24.51°C rad, := 0.006 m
T, := 24.271°C rad; := 0.007 m
Ty = 23.994°C radg = 0.008 m
Ty = 23.682°C radgy = 0.009 m
Tip:= 23.333°C rad;y = 0.0l m

To compare numerical results with analytical temperature distribution:
For a sphere with internal heat generation, analytical expression for temperature distribution is:

-R
Temp(r): =T, + ig~h,, . %'(Rl 1 (5.42)
Substitute different vahues for r and get temperatures at corresponding nodes:
Analytical solution Numerical soluion with 11 nodes

Node 0: T(0.0) = 25.185 ~ Ty = 25163°C
Node 1: T(0.001) = 25.167 T, = 25.144°C
Node Z: T(0.002) = 25.111 T, = 25.093°C
Nede 3: T(0.003) = 25.019 T4 = 25.003°C
Node 4: T{0.004) = 24.889 T, = 24.876°C
Node 5: T(0.005) = 24.722 Ts = 24.712°C
Node & T(0.006) = 24.519 T, = 24.51°C
Node 7: T(0.007) = 24.278 T, = 24.271°C
Node & T(0.008) = 24 Ty = 23.994°C
Node 9: T{(0.009) = 23.685 Ty = 23.682°C
Node 10: T(0.01) = 23.333 Ty = 23.333°C
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To sketch the temperature profile in the sphere, define a range variable r, varying from 0 to 0.01 m, with an
increment of 0.0005 m. Then, choose x-y graph from the graph palette, and fll up the place holders on the x-axis and y-
axis with r and Temp(r) respectively. Click anywhere outside the graph region, and immediately the graph appears.

Also, to sketch the temperature profile from numerical results in the same graph for comparison, define a range
variable i = 0 to 10 (nodes) and on the x-axis, next to r put a comma and fill up rad; and on the y-axis fill up T; after
putting a comma next to Temp(r), as shown.

Click anywhere outside the graph and both the graphs appear immediately: See Fig. Ex, 8.5(b)

r:= 0, 0.0005, ..., 0.01 (define a range variable r.starting value = 0,
next value = 0.0005 m and last value = 0.01 m)
i=0.,10 (define a range variable, i varying from

0 to 10, with an increment of 1)

Temp. distr. for sphere with heat gen.

25.5

rin metres and
T{r)indegq. C

25 -
]
Tomp (1) ™

i 245 \\\

24
— analytical temperature distribution
-~ temperature distribution by finite differance
235 AN pe y
23 [
°z88388588¢
S 8 & ¢ ¢ ¢ & & o
o o [=3 [=] o [= =] =1
r, rad;

FIGURE Example 8.5(b} Temperature distribution in o solid sphere with heat generation

It is seen that temperature distribution obtained by numerical methods is very close to the analytical results.

8.7 Two-dimensional, Steady State Conduction in Cartesian Coordinates

So far, we considered numerical procedures for one-dimensional, steady state conduction, i.e. temperature gradi-
ents were significant only in one direction as compared to other directions. However, some times we come across
problems where temperature gradients are significant in more than one direction, familiar examples being in
large chimneys and L-shaped bars etc. In this section, we shall study the procedure of solving two-dimensional
steady state problems (with heat generation) by numerical methods.

Consider a two-dimensional system in which temperature gradients are significant in the x and y directions.
Let the x-y plane be subdivided into rectangular mesh of nodes, with spacing of Ax and Ay in x and y directions
respectively. Then, the nodes are numbered with a double subscript notation. i.e. a typical node, T, is the node
with a x-coordinate of (m.Ax) and y-coordinate of {n.Ay). Node countis m =0, 1, ..., M in the x direction and # =
0,1, ..., N in the y direction. See Fig. 8.6.

We see that there are basically three types of nodes: internal nodes, surface nodes, and corner nodes, marked
1, 2 and 3 respectively in the Fig. 8.6 (a).

Difference equations for different nodes are written in the usual manner by making an energy balance for
the elemental volume around the node in question, with all the heat flow lines going into the volume, Elemental
volumes for the internal node, surface node and corner nodes are shown by dotted lines around the nodes, in the
Fig. 8.6.
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= the surrounding nodes
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FIGURE 8.6 Finite difference representation for two-dimensional conduction-nodal network

Difference equations for internal nodes:
Consider a typical internal node, T, , in the x-y plane, with unit depth perpendicular to the plane of paper, as
shown in Fig. 8.6 (b). It is surrounded by 4 nodes: Tp_y 4 T, nas Tpst, n @0 Ty 1. Let us make an energy
balanice on the elemental volume surrounding the node T, ,, Itis observed that heat flows into the node from all
the four directions, i.e. left, right, up and down. In addition, let there be heat generation in the volume at a rate of
(AV. ‘?x)' W, where 4, (W/m>), is the uniform volumetric heat generation rate in the system.

Writing the energy balance, in steady state,

Quet + Qeight + Qup + Qutowen + V45 =0 .{8.40)
ie.
Tyein—T T, -T, T -T
k.Ay.M.__m’_". + k-Ay- maln T Imn A mu+1 " lmn
Ax Ax Ay

T, ,-1—-1
“mn1 m"1+qx-Ax-Ay={)

+k Ax-

Simplifying, we get,
To_1,n “2'Tm,n Tometn N Tpn-1— Z‘Tm,n +Tm,n+1 N 4z -0
(axy? (ay? k
Eq. 8.41 gives the difference equation for internal nodes, ie. form=12, ..., (M-1),andn=12, ..., {(N-1).
Now, generally a square mesh is used i.e. Ax = Ay = (Ax, say). Then, the Eq. 8.41 simplifies to:

gq-(a x)? _0
k
Eq. 842 is the finite difference equation for the internal nodes, with Ax = Ay.
Note that the first 4 terms in Eq. 8.42 are the temperatures of the surrounding 4 nodes, and the last term is
the heat generation term.
When there is no heat generation in the body, the difference equation for the node reduces to:

..{8.41)

T, .(8.42)

m—l,n+ Tm+l,n+Tm,n+1 + Tm,n—l _4'Tm,n +

mel,n +Tm+1,n + Tm,rt+1 +Tm,n—_£
4

i.e. when there is no heat generation, and a square mesh is used in the analysis, temperature of an internal node

is given as the arithmetic average of the surrounding four temperatures. It will be useful to remember this.

Difference equations for boundary nodes:

Boundary nodes may be on the surface or on the corners. Difference equations are developed for boundary nodes

in a similar manner as for interior nodes, i.e. by making an energy balance on the elemental volume surrounding

Ton= .(8.43)
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the node. In Fig. 8.6 (a), we can see that the surface node 2 is surrounded by a half-volume and the corner node
3 has a quarter volume attached to it. Exact form of the difference equation will depend upon the boundary
conditions i.e. prescribed temperature, prescribed heat flux, insulated, convection or radiation boundary condi-
tions.

Fig. 8.7 shows some common boundary conditions encountered in practice.

- AXx
T
Tm‘ n ma Tm, n
Ay
Trstn Tm_1.n® h,
Tm -, n
h T,
Tm' ne1 Tm. n-1
(a) node at internal (b} node at plane surface
corner with convection with convection
Toin Tm, n+ Tm, n
Tt/ X I h, Ta
- f————
Tm— 1,n <« g
Tm, n—1
Tm, n-1
(c) node at external (d) node at plane surface with
corner with convection uniform heat flux

FIGURE 8.7 Finite difference representation for two-dimensional conduction-different boundary conditions

fxemple 8.6, Develop finite difference equations for an interior corner node with convection conditions, using the en-
ergy balance method. See Fig. 8.7 (a).

Solufion. As shown in the Fig. 8.7, elemental volume around the node is % of full volume. Writing an energy balance for
this volume, we apply Eq. 8.40:

Quern + Qrighi + Qup + Qdown + AV-L]S =0 -.(8.40)
ie
Tm_ n7Tmn Tnu wkTr n Lo, n _Tmn
| T ALL L U k.ﬂ.i]-f,, T ke Ay il Tmn
Ax 2 Ax Ay
Tm n-]" Tm n
PR LU Sl + h.(ﬁf.,.ﬂ].(rﬂ ~T,.) +9 -(E’Ax'AyJ =0
2 Ay 2 2 ' fl4
Remembering that Ax = Ay = (Ax, say), we get on simplification,
Trn n-1t 2'Tm—1 nt Z'Tm net t T-u+] w1 6F 2hax 'Tm wt E(Ax)zq_g + 2h Az 'Tu =0
' ' ' T " 2 k k
And, if there is no internal heat generation,
2-h-Ax 2-h-Ax
Tm,,,_l+2-Tm_ll,,+2-Tm’,,H+Tm”,n—(6+- . J-Tm,,,ﬂr P T,=0 -{8.44)

Finite difference equations for the boundary conditions shown in Fig, 8.7 are summarized in Table 8.1.
Note: In Eqs. 842 and 8.44, put & = 0 or 4 = 0, to get difference equations for an insulated surface or a surface with
thermal symmetry.
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TABLE 8.1 Summary of steady stote, finite difference equations for different boundary conditions
{g = heat flux, i = convection heat transfer coefficient & = thermal conductivity, no internal heat generation, and Ax = Ay}

Situation . Finite difféerence equation (with Ax = Ay, no heat generation}
(1) Node at an internal corner with convection, Fig. 8.7,a:
2-h-Ax 2-h-Ax
Tm,n—1+2‘Tm—1‘n+2'Tm.n+1+Tm+1,n_[6+——)’ mant & —Ta=0 .-.(8.44}
(2) Node at a plane surface with convection, Fig. 8.7.b:
2-h-Ax h-Ax
2T v n* Toae1t Tt -Ta—E-{——k-—-+2}-T“,J,!=0 ...(8.45)
(3) Node at an external corner with convection, Fig. 8.7,c:
2hAx hAx
(Tt T P -Ta—Z-{'-k"—+1J-Tm‘n=0 ...(8.46)
{4) Node at a plane surface with uniform heat flux, Fig. 8.7,d:
2.q-Ax
@Tn 10t Tmnet # Tmno ) ® oo 4T, =0 (8.47)
Example 8.7. Develop difference equation for a tool tp, shown in Fig. Ex- q
ample 8.7. There is uniform heat flux, g (W/m? on the upper surface. As- ‘ i
sume a constant thickness, ¢ for the tool tip. i #
Solution. Note that the node (m, n} is enclosed by surfaces AB, BC and CA. T
Finite difference equation is developed by writing the energy balance T A B m*1.n
on the elemental volume surrounding node (1, #} i.e. on the volume en- m.n [
closed by AB, BC and CA, remembering that we assume all heat flow lines
into the volume element.. We get: A
Y
3 ] Tm u*Tmn Ax2+A ¥ h'T
A% g Ay Do Ty JOT Oy ‘
2 2 Ax 2 ’ . —
In the above equation, first term is the heat flux through surface AB, Tm+tn-1
second term is the conduction across surface BC, and third term is convec-
tion at surface CA.

Simplifying the above equation, with Ax = Ay, we get: Ax
k kg FIGURE Example 8.7 Finite difference
[EJ'T"'*"" _(E * ‘E'h]'T’""' +gHV2hT) =0 representation for a tool tip

Above equation gives the desired difference equation for the tool tip.
txomple 8.8. For the two-dimensional region shown in Fig. Example 8.8, with constant k (= 20 W/{mC)) and no internal
heat generation, and with the indicated boundary conditions, formulate the finite difference equations and solve for
unknown temperatures, Use Ax = Ay = 1 cm.

Solution.
Data:
Ax:=001m Ay =001m T,:= 20°C  h:=50 W/(m’C) k=20 W/(mC)
Nodes are represented by numbers 1, 2, ..., 7. Elemental volume pertinent to each node is also marked around it

and numbered a, b, ..., r.
We shall develop finite difference equation for each node by writing the energy balance for the corresponding
elemental volume around that nede.
For node 1:
Elemental volume to be considered is 1/4 volume, 1-a-b-c-1.
For this elemental volume, considering unit depth, heat transfers into the volume are:
From left surface, there is no heat transfer, since it is insulated.
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Convection Ax=Ay=1cm

¥
A . 2
h =50 WH{m"C)
Insulated = 20°
nsu 1 a K T,= 20°C
S
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2H 4 9 5 ll'l 6 ||( 7 suiate
Ml e f i L
. > X
|<——>l N T=150°C
Ax
FIGURE Example 8.8 Finite difference representation for two-dimensional conduction-nodal network

ie. Qleft =0
Form top, Le surface 1-a: there is convection:
\ Ax
1e. . Qmp = h.(?.lJ (T, - T
From right, there is conduction from node 3 through surface a-b:
. A T, -T,
ie, Qrig}“ =k (Tyl)ﬁ
From down, there is conduction from node 2 through surface b-c:

Axr VL -T,
ie. wn =k |—1[ 2 :
1 an [ 2 ] Ay

There is no heat generation term in this problem.
So, heat balance on the elemental volume for node 1 gives:

h-(ﬂ-l)-(Tﬂ— T) + k(ﬂ]}u ¥ k.[ﬂ.q.rfz -h =0
2 2 Ax 2 Ay

ie. 0.25(T, - To) + 10-(T; = T)) + 10-(T, - T}) = © (@)

Eq. a is the difference equation for node 1.
For node 2:

Here, elemental volume to be considered is 1/2 volume, c-b-e-r. and, energy balance can be written as we did for
node 1.

However, since the surface is insulated, it is easier to use the mirror image concept and consider the node 2 as an
internal node. So, to the left of node 2, we have T, mirror image of temperature of node 4. Then, considering 2 as
internal node, we get difference equation for node 2:

T, + T+ T, +150-4.T,=0 {b)

For node 3:
This is a corner node with convection. Elemental volume to be considered is 1/4 volume, a-3-d-b.
We can directly apply Eq. 8.46, viz.

2-h-Ax h-Ax
(Tm,u~1+Tm—l,n)+ 'Tu_z'[

+ IJ-T,H' ,=0 {8.46)
ie. T, + Ty + 0.05-T, -205-T, = 0 )

For node 4:
This is an internal corner node with convection. Elemental volume to be considered is 3/4 volume, g-f-e-b-d-4.
Again, we can directly apply Eq. 8.44, viz.

T,=0 —(B.A4)

2-h-Ax 2.k Ax
Tm,n~1 +2'Tm»1,n + Z'Tnl,n+1 +Tm+1,r:_ [6+ ] moat
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ie. 150 + 2Ty + 2-T5 + Ty - 6.05-T, + 0.05-T, =0 {(d)
Eq. d is the difference equation for node 4.

For node 5:

This is a surface node with convection. Elemental volume to be considered is 1/2 volume, g-f-i-h-g.

Again, we can directly apply Eq. 8.45, viz.

2:h-A -
2~Tm—l,n+Tm,n+l+Tm,n—]+ k al Tu_z'(hfx"'z]']-‘m,n:o (845)

Remembering that Eq. 8.45 was developed for a vertical surface, and in the present case, we are dealing with a
horizontal surface, we can write:
2150 + T, + Ty + 0.05-T, - 405-T5;=0 ..(e}
For node &:
This is identical to node 5. So, we get:
2150 + T35+ T, + 0.05-T, - 405-T; =0 (f)
For node 7:
This is a corner node with conduction from left, convection on the top, insulated on the right, and conduction from
down. Elemental volume to be considered is 1/4 volume, k-7-p-j.
Writing the energy balance:
k.(ﬂ.l}u + h'(ﬁ'l)'(n ~TH+0+ k.(ﬂ.l}ﬂﬁ ={
2 Ax 2 2 Ay
ie. 10-(T; — Ty} + 0.25-(T, - T;) +10-(150 - T;} = 0 A8
Temperatures at nodes 1 to 7 are obtained by simultaneously solving 7 Eqs. a to g.
We use ‘solve block’ of Mathcad to solve this set of equations. Start with guess values for all unknown temperatures

and immediately below ‘Given’, type the constraint equations. Then, the command ‘Find (T}, ..., T5)’ gives the tempera-
tures immediately:

T,:=5 T,:=50 T;:=50 T,:=50 T;:=50 T,=50 T,:=50 (guess values of temperatures)
Given
0257, - T) + 10(T, =T + 10-(T, - Ty) = 0 ()
T,+ T+ Ty +150-4.T, =0 ..{b}
Ty+ Ty + 005 T, -205T;=0 .{c)
150 + 2.7, + 2. Ty + T5 - 6.05-T, + 0.05. T, = 0 ()
2150 + Ty + Ty + 0.05-T, -405-T; =0 . ..{e)
2150 + Tg+ T, + 0.05-T, - 4.05-T; = 0 ()
10-(T, - T} + 0.25-(T, - T;) + 10-(150 - T5) =0 -Ag)
Temp := Find(Ty, Ty, T3, Ty, Ts, Te, T5) {node temperatures are stored in vector “Temp'.)
[138.552]
142.929
137.13¢
ie. Temp = ; 141.582
145.437
146.438
| 146.636 |

i.e. The node temperatures are:

T, = 138552°C T, = 142929°C T, =137.139°C T, = 141.582°C

Ts = 145437°C T, = 146.438°C  T; = 146.636°C
Note: In Mathcad, while using the solve block, a great advantage is that the equations can be written in any order; also,
there is no need to collect the coefficient of each variable separately. Equations can be entered without simplification, as
in the form we get after making the energy balance. .
fxomple 8.9. A very long bar of square cross-section has its four sides held at constant temperatures as shown in
Fig. Example 8.9. Determine the temperatures at the internal nodes. Compare the results with analytical solution.
Solytion. There are 9 internal nodes. Difference equations for these nodes are obtained by applying Eq. 8.42, viz.
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¥y : 'R {Ax)?

4 val,n+Tm+1,n+Tm,n+1+Tm,uul_4'Tm,n+ P =0

T=200C -(8.42)
2 In the present case, there is no internal heat generation. So, the

1 2 3 last term of the above equatien will be zero. Therefore, we get:
Node 1: 150 + 200+ T, + T, - 4T, = 0 (a}
o sl s Node 2: T, +200+ T3+ Ts—4T, =0 (b)
T=150°C T=150°C Node 3: Ty + 200+ 150 + Ty ~4-T; =0 (S
Node 4: 150+ T, + Ts+ T, - 4T, =0 Ad)
! 2 Node 5: T+ Ty 4 Ty + Tg-4.T5 =0 (@)
Node 6: To+ Ty+ 150+ T, - 4T =0 ()
- » x  Node7: 150+ T, + Ty + 150 - 4.T, =0 )
0 T=150°C 2 Node 8: T, 4 Tg +Ty+ 150 - 4.Ty = 0 ()
FIGURE Example 8.9 Finite difference Node 9: Ty Tg + 150 + 130 = 4T, = 0 ki)

Egs. a to i give 9 difference equations for 9 internal nodes. By
solving these equations simultanecusly, we get the temperatures at
nodes 1 to 9. )

We use ‘solve block’ of Mathcad to solve this set of equations. Start with guess values for all unknown temperatures
and immediately below ‘Given’, type the constraint equations. Then, the command ‘Find (T, ..., Ty)" gives the tempera-
tures immediately:

Ti=50 Tp:=50 T3:=50 T,=50 Ts5:=50

representation for two-dimensional conduc-
fion-nodal network

Toi=50 Tp:=50 Tg:=050 Ty:=>50 (guess values of temperatures)
Given
150 + 200+ T, + Ty -4T; =0 ..(a}
Ti+200+ T3+ T5-4T,=0 (b}
T, +200+150+T, -4T;=0 )
150 + Ty + Ts+ T; - 4Ty =0 .(d)
Ty+ T+ T, +Ty-4Ty =0 -(e)
T+ T;+150+ T, -4.T, =0 - (f}
150 + Ty + Ty + 150 -4-T, =0 )
Tr+Tg+ Ty +150-4Ty =0 (b}
Tg+T,+150 + 1500 - 4. Ty =0 (i)
Temp := Find(T,, Ty, T3, Ty, Ts, T, T7, Ty, Ty} (rode temperatures are stored in vector ‘“Temp'.}
(171.429]
176.339
171.429
159.375
ie. Temp = |162.5
159.375
153.571
154.911
| 153.571 |

i.e. The node temperatures are:
T, =171429°C T, =176339°C T, =171429°C T, = 159.375°C Ts = 162.5°C T, = 152.375°C
T, =153.571°C T, = 154911°C = Ty = 153.571°C

Comparison with analytical solution:

Analytical solution for thjs probiem is a little complicated and is given in terms of an infinite series, as follows:

sinh(nvr-MJ

_g 2N L) sl X
&=48, p Z , ‘ ( W} sm(n F:4 L)
n=1 sinh n-z-T
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Nomenclature for the above equation for the present problem is as follows:
g=T-150 (T = temperature at the desired point; 150°C is the constant temperalure on three sides)

& := 200 - 150 (temperature difference befween the temperature of fourth side and the consant temperatiire)

! {number of terms considered in the infinite scries)

=

XYy (covrdinates of the point where temperature is desired)
Li=2m (length along x-axis)
W:=2m {length along y-axis)

Above equation is solved very easily in Mathcad:
Let us re-define #as a function of (x, y), and consider only 6 terms of the infinite series (n = 6) as shown below, for
convenience:

1
6 sinhjn-mw-=
2 -1 n+1 1 [ ]
8x, y) := 96-}» E 1 T L -sin{n'ﬂ-i) (A) (define Oas a function of x and )
n=1

n sinh(n-:r-w-]
L

Now, substitute (x, ¥) corresponding to different nodes and get the analytical temperature at those nodes immedi-
ately:

Node ey LT Temperature of riode (deg. C) Temperature by -

1 6(0.5, 1.5) = 21.623 T, = 6(05, 1.5) + 150 T, = 171.623 171.429
2 8(1.0, 1.5) = 27.059 T, = 6(1.0, 1.5) + 150 T, = 177.059 176.339
3 6(1.5, 1.5) = 21623 T, = 6(1.5, 1.5) + 150 T, = 171.623 171.429
4 (0.5, 1.0) = 9.102 T, = 6{0.5, 1.0) + 150 T, = 169,102 150.375
5 8(1.0, 1.0) = 125 T, = 6(1.0, 1.0) + 150 T, = 1625 162.5

6 #(1.5, 1.0) = 2.102 T, = 6(1.5, 1.0) + 150 7, = 159.102 159.375
7 6(0.5, 0.5) = 3.399 T, = (0.5, 0.5) + 150 T, = 153.399 153.571
8 (1.0, 0.5) = 4.771 T, = 6(1.0, 0.5) + 150 T, = 154.771 154.991
9 ot1.5, 0.5) = 3.399 T, = 8(1.5, 0.5} + 150 T, = 153.399 153.571

We make following important observations:

(i) Even with a crude mesh of 4 x 4, we get values of temperatures at the nodes very close to the analytical
results.

(ii) Note that the analytical relation to find the temperature at any point is very complicated, and o solve it
without a computer is rather Jaborious and time consuming. But, with Mathcad, even this analytical
solution is easy to perform.

(ili) Numerical method of formulating difference equations by energy balance method is easy and straight
forward, only labour being in solving the set of simultaneous equations. But, with Mathcad, this is also
very easy.

Irregular boundaries:

Very often, in practice, we have to analyse bodies with irregular boundaries, e.g. engine blocks, turbine blades,
aerofoi] sections etc. In such cases, the whole volume cannot be entirely filled up by the square mesh used for
numerical analysis. Still, easiest and simple approach to deal with such geometries is to fill the geometry by
approximating the irregular boundary with simple square mesh elements, as shown in Fig. §.8. This method,
generally gives results of acceptable accuracy, particularly when the mesh size is small and the nodes are quite
close to each other. Many commercially available specialized software for numerical analysis employ more 50-
phisticated methods.

8.8 Numerical Methods for Transient Heat Conduction

In transient conduction, temperature varies with both position and time. So, to obtain finite difference equations
for transient conduction, we have to discretize both space and time domains. This scheme is iliustrated in

Fig. 8.9.
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FIGURE 8.8 Approximating an irregular
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Figure 8.9 Finite difference repre-

sentation for one-dimensional, transient

conduction-nodal network

Here, the space increment is Ax and the time increment is At
At a given node ‘m’, x ~ coordinate is (m.Ax) and at a given time
step ‘#’, time from start up is (1A1), as is clear from the Fig. 839,
Starting from initial temperature at 7= 0, at each node we calculate
the temperature at a successive time interval of Az till we reach the
desired time at which temperature has to be calculated. Therefore,
obviously, number of calculations required in case of transient con-
duction is much more. Time step is shown in superscript, i.e. T, is
the temperature of node ‘m’ at time step *i’ (at time = i.A 7 from start
up) and the notation T,,’ ! means the temperature of node ‘m’ at the
time step (i + 1) ( at time = (i + 1)A7 from start up).

Formulation of finite difference equations in transient conduc-
tion is done by an energy balance on the elemental volumes con-
taining the nodes, just as was done in the case of steady state
conduction; however, now, on the RHS, there appears a term repre-
senting the change in energy content of the elemental volume, with
time. Also, as in the earlier case, while writing the energy balance,
it is assumed that all heat lines flow into the elemental volume.
We write, for a given volume element:

{Heat transferred into the volume element from ali sides, per unit
time) + (Heat generated within the volume element per unit time) =
(Change in energy content of the volume element per unit time).

Ly
At

..(8.48)

In the above equation, as already mentioned, T, is the tem-
perature of node “m’ at time step ‘f’ (i.e. at time = {. A7 from start up)
and T,/ *! is the temperature of node ‘m’ at the time step (i + 1} (ie.

(Quee + Qup + erght + Qiown + Qg =p Ve]ement'cp":

” Xat time = (i + 1)AT from start up).C, is the specific heat and p is the

1

density of the medium. (T,’*? - T,})/Aris the finite difference ap-
proximation of the term dT/dz.

Now, regarding the terms on the LHS of Eq. 8.48, the question
arises as to whether we should consider the temperatures of the
nodes at step ‘i’ or step ‘(i + 1)’. In fact, both the methods are
adopted in practice. While applying Eqs. 8.48 to write the finite dif-

ference equation for a node, if the terms on the LHS of the equation are considered at time step ‘f’, then, the
method is known as explicit method of approach; if the terms on the LHS of the equation are considered at time
step ‘(i + 1), then, the method is known as implicit method of approach. To summarize:

Explicit method:

(Quort + Qu}j + Qrightf + Qown + Qgi) = P Veroment Cp

Implicit method:

i+1 i+1 f+1 i+1 i+1
(Quest " + QupH + Qrigh:+ + Quown” ) + QgH— =p Velement'cp'

..(8.49)

T -1
At

-{8.50)

i) -1,
AT

In the explicit method, time derivative is calculated in *forward difference’ form, and in implicit method, the
time derivative is in the ‘backward difference’ form.

Egs. 849 and 8.50 are applicable in any coordinate system and for multidimensional systems too; however,
when more than one-dimension is involved, number of surfaces through which heat flows into the elemental
volume are more and there will be correspondingly more terms on the LHS of Eqs. 8.49 and 8.50.
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Explicit method is called so, because temperature of the node ‘m’ at time step (i + 1) is calculated explicitly in
terms of the temperatures calculated at the previous time step ‘i’; therefore, the calculations are quite straight
forward; however it suffers from a serious limitation that the time increment cannot be independently fixed, but
has an upper limit because of stability considerations. But in case of implicit method, this limitation on time
duration is not there and we can choose any time step; but the implicit method requires that at each time step,
nodal temperatures have to be solved simultaneously.

8.8.1 One-dimensional Transient Heat Conduction in a Plane Wall

Consider one-dimensional, transient heat conduction in a plane wall of thickness L, with heat generation rate
qg(x, 1) and constant thermal conductivity k. Now, let us divide the region 0 < x < L into M sub-regions. Then,
thickness of each sub-region is:

Ax = L/M. So, there are totally (M + 1) nodes, starting from m = 0 to m = M, as shown in Fig. 8.10. Coordi-
nate of node ‘M’ is x = m.Ax. and let temperature of node ‘m’ be T,,. Remembering that each node represents the
sub-volume around it (of thickness Ax), it is clear that interior nodes 1, 2...M - 1 represent full sub-volumes
whereas boundary nodes 0 and M represent half volumes (of thickness Ax/2). Volume of element surrounding
node ‘m’ is A.Ax.

Volume.element of nede 'm’

Plane wall G
Axi2 P e

N Dot —> 6 Qrignt

Ta >

ha Tg T Tz Tzt Tm T+ Th—s T o

- * * 1 »> X
0 1 ) m-1 m m+1 |[€«—»M-1(M
m—-1/2 m+ 12

x=0 x=L

FIGURE 8.10 Finite difference formulation in a plane wall by energy balance for transient heat conduction

To get the finite difference formulation, we apply the general energy balance, i.e. Eq. 8.48:

Ty-1— T Tos1— T i+l _Ti
kA + kA L 4 g, (A-Ax) = pA-Ax-C 22— ..{8.51
Ax Ax ' ( )=p PooAr (651
Simplifying,
2 2
(A , ,
Ty =2Tp+ Tpyor + 20 Ax) _ (B2 qic1i_1j (8.52)
k o-AT
where, = LI thermal diffisivity of the material.
P P
Now, the term ((: ); is the finite difference form of the Fourier number, Fo
x
So, Eq. 8.52 reduces to:
(AxR (T (T
Tm—l ”2'Tm + Tm+1 + i ( x) = ( m) ( m) ...(8.53)

k Fo

Now, as we mentioned earlier, in the LHS of Eq. 8.53, we can use the temperatures of the nodes at the
"previous time step, i, or temperatures at the ‘next time step, 1 +1". If we use temperatures at time step i’, it is the
‘explicit method” and if the temperatures at time step f + 1" are used, then, it is the ‘implicit method’.
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Explicit method:

j .- L Ax? (Tt (T

(T = 2T + (T, D'+ @’M = (J), _ ,(!") (8.54)
‘ k Fo

Now, the new temperature T, *' can be explicitly solved since the other terms involved at the previous time

step ‘I’, are already known. So, we write for T,'*":

(gm) (Ax)?

k

Eq. 8.55 is the explicit difference equation valid for all interior nodes, 1, 2, ..., {M - 1}, when there is internal
heat generation.
When there is no heat generation, Eq. 8.55 reduces to:

(T = Fo-l(T,,_ ) +(T,,. )] + (1 - 2-Fo)-(T,,)! ...(8.56)

Implicit method:
If in the LHS of Eq. 8.53, we use the values at time step (i + 1), we get the implicit relation for the node tempera-
tures:

(T,)"* = Fo[(T,, .Y + (T,,. )] + (1 - 2-Fo)-(T,)) + Fo- ...(8.55)

P+1 A2 i+1_ o v
ie. (Tm— 1)i+'l _ 2'(Tm)j + 1 + (Tm . 1),‘ +1 + (qm) 77777 !AX) - (an} (Tm) (857)
k Fo

Eq. 8.57 is simplified to:

(14 2-F0) (T, ¥ * 1 = F ) (T ) L+ (T + e = +(T,) . ..{858)
Eq. 8.58 is the implicit difference equation valid for all interior nodes, 1,2,....(M - 1), when ther - is internal
heat generation.
When there is no heat generation, Eq. 8.58 recduces to:
(1+2F){T,Y* ' = Fo-[(T,, ¥ "'+ (T, " N=(T,) =0 ...(8.59)
With the use of either the explicit or the implicit equations given above, we get M — 1 nodal equations.
Unless the temperatures at the boundaries are specified in the problem, we need two more equations for the
boundary nodes ‘0" and ‘M’. These are obtained by applying the energy balance for the half-volumes around
these nodes. See Fig. 8.10. Exact nature of the difference equations depends on the specific boundary condition.
For example:
For node ‘0" with convection boundary condition:
Explicit formulation:

; (M) = () ., 8% Ax L (To) - (TyY
AT, - (T, [ S P LA L A= =pA bl T .(8.60
[ a ( [))] + Ax + (q{)) 2 p 2 P AT ( )
Simplifying:
) i 2
(To)'*'=(1~2-Fo - 2-Fo-Bi)-(Ty)' + Fo:| 2-(1}) +2.Bi T, + o) 80" .{8.61)

h-Ax
where Bi = T = Biot number

When there is no heat generation, Eq. 8.61 for explicit formulation becomes:
(To¥ "' = (1 =2-Fo - 2-Fo-BD)-(Ty)' + Fo-[2-(TyY + 2-8i T,] ..(8.62)

For other types of boundary conditions, difference equations are developed in a similar manner, by applying
the energy balance on the elemental volume containing the node and considering all the heat flows to be into the
volume. '

Once the difference equations are developed for all nodes with suitable Ax, next step is to choose a suitable
time increment A7. Then, starting with the initial conditions at 7= 0, solve the difference equations for the tem-
peratures T,*! at all the nodes at the next time step 7= Az. Now, using these values of temperatures as ‘previous
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values’, again get the nodal temperatures at the next time step 7= 2.A7, using the same difference equations.
Thus, continue to march in time till the solution is obtained for the desired time interval.

Stability criterion:

We said that once the explicit difference equations are developed, suitable time interval Arhas to be chosen. This
is done keeping the stability criterion in mind, since the explicit method is not unconditionally stable. That
means, above a certain value of A7, the solution will not converge. This limit on A7 is determined from math-
ematical and thermodynamic considerations (see good text books on numerical methods) as follows:

“Coefficients of all T, in the T,’*! expressions (called ‘primary coefficients’) must be greater than or equal to

zero for all nodes m™.

Considering Eq. 8.55 for interior nodes, we see that coefficient of T,! is (1 — 2.Fo) and applying the above
mentioned criterion for stability, we get:

1-2-Fop=z0

c-Ar 1 L . . .

o= @ )2 < 3 { for interior nodes, one-dimensional conduction..(8.63))
x

Now, Ar must be fixed from Eq. 8.63. | Plane wall qg

However, generally, boundary nodes with convec- Axf2
tion conditions are more restrictive and in such cases, /
coefficient of T, from the most restrictive eqn. must be —
considered for the stability criterion and the time step
At must be determined with respect to that coefficient. ¢
Example 8.10. A large uranium plate of thickness L = 10
em, (k = 28 W/(mC), @ = 12.5 x 107° m?/s) is initially at an
uniform temperature of 100°C. Heat generation rate in the
plate is 5 x 10° W/m>. At time 7= 0, both the left and right
sides of the plate are subjected to convection with a fluid at
at temgerature of 0°C and a heat transfer coefficient of 1500
W/ (m?C). Using a uniform nodal spacing of 2 em, develop
the explicit finite difference formulations for all nodes, and
determine the temperature distribution in the plate after 5
min. Also, find out how long it will take for steady condi-
tions to be reached in the plate.

*
L J
[ ]
2
>

x=0

FIGURE Example 8.10 Finite difference formula-
tion in a plote by energy balance for transient heat
conduction

(b) Also, solve this problem by implicit finite difference formulation.
Solution.
Data:
Li=0im k=28W/(mCQ a:=125x10"m%s g:=5x10°W/m® T:=100°C T,.:=0%C
Ax:=002m h = 1500 W/(mzC) (convective heat transfer coeff.) M =5 7:=300s
Difference equations for interior nodes:
Nodes 1, 2, 3 and 4 are interior nodes. Finite difference equations for these nodes by explicit method are obtained from
Eg. 8.55, by setting m = 1,2, 3, 4. ie.

I_ 2
(T "1 = Fo-[(Tp_ 1) + (T ] + (1 = 2:F0)-(T,) + Fo'(‘q‘%s"x)“ +(8.55)
We get:

) ) ) :'_ A 2

Node 1: T/* = Fo[(T + T;) + (1 - 2-Fo)- Ty + Fo-%—)T(f—)—-- (b)
‘ ) . {(Ax)

Node 2: T, %% = Fo[{T + T4) + (1 ~ 2:Fo)- T4 + Fo: ;) ; i )
. X , LAY

Node % T{* = Fol(T{ + T} + (1 - 2-Fo) Ty + Fo-ﬂg)—i—ﬂn L
) 7 ATV

Node 4: T, = Fo[(Ty + T5) + (1~ 2-Fo) T4 + 1-'0-(%—)!5—-1 {e)
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Difference equation for boundary nodes:
For node ‘0"
Node ‘0 is on the left surface, subjected to convection. Applying the Eq. 8.61 directly:

i 2
(Te)'* 1 = (1 - 2-Fo - 2-Fo-Bi}-(T,) + Fo- [2-(]‘1)' +2-Bi-T, + M] _(861)
where B; = -’lf—{ = Biot number

) ) . (Ax)
ie. (T "1 = (1 -2Fo~2FoB)(Ty) + Fo-[Z-(Tl)‘ +2.Bi-T, + %—)—] ()
For node 5:

This is a node with convection boundary condition. So, applying the energy balance to the half-volume around node 5,

with all the heat lines flowing into the element, we get:

; T,-T: Ax Ax . TT-T
AT - T A5 A— =-pA—.C.5 5
(To-To) + & ( Ax ]H?? I N e
. ) X 2
ie. T;“ =(1-2F,-2-F:B){Tsf + F, [2-(T4)'+2-Bi-T,, +("—)’(CA~X~)-} B

Now, we have to fix the upper limit of Az from stability criterion. To do that, we observe that in Egs. a to f, the
smaller coefficientof T,/ is in Eq. f, i.e. (1 - 2. Fo -2.F0.B;) must be greater than or equal to zero. Putting this condition,
we get:

1-2Fo-2Fo- 225 59
1
ie. Fo =<
’ 214 8%
P
A 2
ie. Ar< ( x)hA
2-a-(1+ xJ
ie. AT<7.724 s

This means that a time step less than 7.724 s has to be employed from stability criterion.
Let us choose:

Ari=5s

a-Ar

Then, Fo:= ——= ie. Fo=10.1563
(Ax)
Substituting all relevant numerical values in Eqs. a to f, we get the explicit difference equations as:

Ty* ! =0353-T, + 0.1563-(2. T, + 71.429) ~{a)
T/ = 0.1563- (T + T,) + 0.688-T,' + 11.161 -.{b)
T4 = 0.1563-(T) + T5) + 0.688-T; + 11.161 )
T4+ = 0.1563-(T + T,y + 0.688- T, + 11.161 -(d)
TS+ = 0.1563-(T + T} + 0.688 T, + 11.161 .(e)
Ts 1= 0.363(T5) + 0.1563-[2-(Ty) + 71.429] {6

Initial temperature of the plate at r = 0 and 7 = (, is given as 100°C.
ieTl=T"=T=T0 =T = 100°C

Therefore, at the next time step i = 1, i.e. at AT =5 s, temperatures at nodes 0 to 5 can be explicitly calculated from
Egs. a to f. Then, calculate temperatures at the nodes for next time step of A7 = 10 6, using the same Egs. a to f, since the
temperatures at the previous time step are already calculated. Thus, march in time till we reach the time limit specified
in the problem, 5 min, i.e. there are 60 time steps of 5 s each.
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This calculation is easily done in Mathcad. We slightly change the notation for convenience in calculation: we wrile
the superscripts as subscripts to work with matrix notation, as shown below. 1.

In the small Mathcad program given below, LHS defines a function “Temp(n)’ where # is the no. of time steps,
which we can specify. Qutput is a vector containing step no., total time elapsed, and node temperatures Ty, T3, .., Ts.

fOn the RHS, first 6 lines define the initial temperatures at the nodes, all equal to 100°C.

Then, a ‘for loop’ evaluates the finite difference Eqs. a to {, each ‘new’ node temperature being calculated in terms
of the temperatures calculated in the previous time step. Here, the number of time steps, ‘n’ can be changed since it is
included in function definition on the LHS.

Temp(n) =| T, « 100
T1, « 100
T2, « 100
T3, « 100
T4, « 100 .
T5; « 100

foriel..n
TO,;,, «0.353-T0O; + 0.1563(2-T1; +71.429)

T1,,, < 0.1563-(T0, + T2,) +0.688-T1, + 11161
T2, ¢-0.1563-(T1, + T3,) + 0.688.T2; +11.161
T3,,, «0.1563(T2; +T4;)+0.688-T3, +11.161
T4,,, < 0.1563-(I'3, + T5,)+0.688-T4; + 11161
TS, , ¢ 0.353.T5, +0.1563-(2 T4, +71.429)

i 5.i TO, T, T2, T3, T4, T5]

i+1

Temp(0) = [0 0 100 100 100 100 100 100] (starting at time = 0}

i = step no.; Az= one time step = 5 5; 7 = time duration from beginning = i. A7, s

i T T, T, T, T T, Ts

Temp(2) = 2 10 73.369 117.213 122.449 122.449 117.213 73.369]
Temp({4) = [4 20 75.447 127.666 142472 142.472 127.666 75.447]
Temp(12) = [12 60 95.576 169.805 202.468 202.468 169.805 95.576]
Temp(18) = [18 90 108.991 196.256 236.479 236.479 196.256 108.991]
Temp(24) = [24 120 120.036 217.958 264.179 264.179 217.958 120.036)
Temp{(36) = [36 180 136.45 250.194 305.285 305.285 250.194 136.45]
Temp(48) = [48 240 147.409 271.714 332.724 332.724 271.714 145.409]
Temp (60) = [60 300 154.724 286.079 351.041 351.041 286.079 154.724]
Temp{120) = {120 600 167.466 311.102 382.942 382.946 311.102 167.466]
Temp(180) = [180 900 169.155 314.419 387.176 387.176 314.419 169.155]
Temp (250) = [250 1.25 x 10° 169.388 314.878 387.761 387.761 314.878 169.388]
Temp(260) = [260 13 x 10° 169.395 314.891 387.778 387.778 314.891 169.395]

Temperature distribution after 5 min.:

Above Table of results gives node temperatures at different time steps.

Temp(60) corresponds to 60th time step, i.e. 300 s from beginning.

We note that after 5 min. the node temperatures are:

To=Ts =154724°C; T, =Ty = 286.07°C; T, =T, = 351.041°C;

Time to reach steady state:

It may be seen from the Table that from about 240th step, the temperatures at the nodes do not vary much as we advance
in time, i.e. steady state is reached at about 20 min. from start up.

To draw the temperatures at the nodes at different times:

It is instructive to graphically represent the manner in which the plate proceeds to attain steady state temperature. First
represent the node temperatures at different time steps as vectors:
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(100
100
100 ) e
Step0 = 100 (intial temperature distribution in nodes 0, 1, .., 5)
100
1100
Similarly, temperature distributions after 1, 5, 10, 20 and 30 min. are given Stepl, Step5,...etc., below:
" 95.58 [154.72] 167.47
169.81 286.08 3111
202.47 351.04 382.95
5Pl = | so0 47 SPY = aioa| SEP0= | gp o
169.81 © |286.08 3111
L 95.58 | _154.724 167.47
[169.38] 7169.41]
314.86 314.92
387.74 387.82
Sep20 = | iy 74 S1ep30 = | 367 8
314.86 314.92
| 169.38 | [ 169.41

To draw the graph, first define a range variable i = { to 5 with an increment of 1. This tepresents nodes 0, 1, ..., 5.
Select the x-y graph from the graph palette and fill up ‘7" in the place holder on the x-axis. In the place holder of y-axis,
fill up above shown temperature vectors, with a comma between each. Click anywhere outside the graph region and the
graphs appear:

{:=0,..,5 (define a range variable 'i' varying from O to 5, with an increment of 1)

It is seen from the graph that steady state is reached at about 20 min. from start up.

Transient lermnperature distribution in a plate

400

350 —

O 300 e s
o 1 b
‘é’ 250 /‘, \\
2 ) v
T 2 — = >
g O/ o ey N
E .
2 150
100
50
0 1 2 3 4 5
Node number
— Initial temperature distribution -man- After 10 min.
XXX - After 1 min, —+—  After 20 min,
+++ After 5 min, “oe After 30 min.
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{b) Implicit method:
Difference equations for interior nodes:

Nodes 1, 2, 3 and 4 are interior nodes. Finite difference equations for these nodes by implicit method are obtained from
Eq. 8.58, by setting m =1, 2, 3, 4. i.e.

(1+ 2-Foy-(T,)*! —Fo-[(]’,,,_l)'” +{T 0 +M (T, ) =0 ...(B.58)
Node 1: ‘ (1+2Fo)-Ty ! _—F(){(TU)'*‘ +(T,) ! +(L)'?£W -T/=0 (b}
Node 2: (1+2-Fo)-T; "' - Fo-[(T,)"l H(TYY +%’M—)ﬂ ~T =0 e}
Node 3: | {1 +2Aro).r;'*‘—Fo-{(rz)"'u(n)“uw— -T{=0 (d)
Node 4: 1+ 2-Fo) T/ ' - F()-l:(Ta}"‘-%(T;)I ' +%—){ﬂw ~T/=0 (e

Difference equations for boundary nodes:

Nodes 0 and 5 are boundary nodes, with convection conditions.
For node 0"

Writing the energy balance for the half-volume around node ‘0’, with all heat flow lines going into the volume element,
with the LHS of Eq. 8.60 expressed at time step (i + 1), we get:

My =@y,

A . I+l‘7 1
;;.A.[TQL(TD)'”] + kA qx.A.J, = p-A-ﬁ-C () —(h)

Ax 2 2 " At
Fo-h-A ; . : Fo-g,-{Ax)’ . ]
ie. LO:HE'ITE (T " "} + 2-Fo[(Ty)) "1 = (T 1+ —%—L = (T - (T ...(a)
Eq. a is the implicit finite difference formulation for node '0Y, with convection conditions.

For node ‘5"
Writing the energy balance for the half-volume around node ‘5, with all heat flow lines going into the volume element,
with the LHS of energy balance equation expressed at time step (i + 1), we get: '

) T|'+1_T!+l AX Ax TI+|_T!
AT - Tty + kA | A——5 CA = = A2 S5 lE
AT -1+ [ ]“’* 7 TP T T Ay
: 2-Fo-h-A i~ i+ i+ FUq '(Ax)l i+ i
ie. T, - (T N+ 2R AT - T e = (T (T D

Eq. f is the implicit finite difference formulation for node 5, with convection conditions.
Now, we can choose any A7, since there is no problem of stability in implicit formulation.
Let us choose:

Ar:=10s
A

Therefore, Fo:= 85 e Fo=03125
(Ax)

Inserting numerical values, Egs. a to f are written as:

0.67-[T, - (Tpy * ']+ 0.625 [(T) * ' - (T 7 1+22321 = (Tf*' - (T) (a)
1625-7, " 1= 03125 [(FyF * 1 - (T " 1 + 71.429] - T/=0. ..(b}
1625-T5 * ' = 03125 [(T)) "'+ (Ty) * 1 + 71.429] - T, =0 ()
1625-Ty * 1 - 03125 (T "1+ (T "1 +71429] - T, = 0 Ad)
1625. T, * 1= 03125 [(T;) * 1 + (T ' + 71429} - T, =0 .{e)
0.67-[T, — (To) '] + 0.625-[(TY * 1 + (T * 1] + 22321 = T+ (Ty) B
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Now, to start with, i.e. at =0, all the node temperatures T, Ty, ..., T5 are known. Then, at the next time step, solve
" Eqgs. a to f simultaneously to get the node temperatures at that time step. Using these results, solve the Eqgs. a to f at the
* next time step, etc. till you reach the given time limit.
This part of the problem is left as an exercise for the student, Write a computer program to accomplish this task. Use the Gauss-
" Siedel iteration technique Jfor the solution of simultaneous equations,

8.8.2 Two-dimensional Transient Heat Conduction

Fig. 8.11 shows a rectangular region where the heat transfer in x and y directions are significant, and heat transfer
"in the z direction is negligible. Divide the rectangular region into a nodal network of thicknesses Ax and Ay as
_shown. Let the thickness in the z direction be unity. :

Finite difference equations are developed by writing the energy balance for an elemental volume surround-
ing the node under consideration. All heat flows are considered to be flowing info the volume.

Difference equations for interior nodes:

A typical interior node, T, , and the elemental volume surrounding it, and immediate neighbours of this node

are shown in Fig. 8.11 (b). Node T,, , is surrounded by 4 nodes: T, 1 o T nste Tons ,neand T . Let us make

an energy balance on the ¢lemental volume surrounding the node T,y n It is observed that heat flows into the
node from all the four directions, i.e. left, up, right and down. In addition, let there be heat generation in the
volume at a rate of (AV.q,), W, where Ggr (W/ m?), is the uniform heat generation rate in the system.

N
# T on, 1 Tm,n+1/m n
1"
pud Ly Tn-1.n DEd Tnet,n
T R T '
2 Tm, n—-1
Typical internal node, T, , and

0 1 2_4 Ax M the surrounding nodes
(a) (b)

FIGURE 8.11 Finite difference representation for two-dimensional conduction-nodal network

Writing the energy balance,
dT

Qleft + Qup + Qnght + Qduwn + Avqg = meE (8'64)
ie,
1 Ay Tm—l ] Tm,n ‘k Ax.Tm,n+1 “im,n k‘Ay'Tm-v-l,n _Tm,n
Ay
Tot,n-1—To, n i+l _i

+k-Axy ————— 4 g AxAy = pACAY-C LW ..{8.65
Ay g y=p YO =17 (8.65)

For Ax = Ay (i.e. a square mesh), we get:

-(Ax)2 i+l _pi

Tm-l,n+Tm+1,n+Tm,n+1+Tm,n41_4'Tm,n+ qg = & (866)

k Fo

A
where Fo = Z ; = Fourier number, and e is thermal diffusivity.
. x

Now, on the LHS of Eq. 8.66, if we use the ‘previous’ time step ‘', we get the explicit formulation of finite
difference equation for interior nodes: -
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ie.

g (A0 (D)t =)

(Tm -1, n)i + (Tm +1, n)i + (Tm, n+ 1)i + (Tm, n- 1)l - (4 Tm, n)i + k FO (867)

ie
2
il _ i i : i i g (Ax)

(Tm, n) - FO'[(TmAl,n) +(Tm+1,n) + (Tm,n-l) + (Tm,n—l)] + (1_ 4‘F0)'(Tm, n) + Fo- (868)
Eq. 8.68 is valid for all interior nodes, when there is heat generation.
If there is no heat generation, Eq. 8.68 simplifies to:

(T = o[, + T * T+ T D1+ (1 -4 Fo) (T o) .(8.69, a)

As mentioned earlier, stability criterion in the explicit method requires the coefficient of (T, ) to be positive
and this condition gives the upper limit on the time increment Az, as follows:
adt 1
Fo=-—z <~ (stability criterion for interior nodes...(8.70))
(Ax) 4
Now, on the LHS of Eq. 8.66, if we use the ‘future’ time step ‘i +1', we get the implicit formulation of
finite difference equation for interior nodes. S0, we get:
(T )} T = (14 4-F0)- Tyl = Fol

41 f+1 i+1
+ Ty 1t Trnal + 1) ..{8.69, b}

Tr;:}l,n
Difference equations for boundary nodes:
Boundary nodes may be on the surface or on the corners. Difference equations are developed for boundary nodes
in a similar manner as for interior nodes, i.e. by making a heat balance on the elemental volume surrounding the
node. Exact form of the difference equation will depend upon the boundary conditions i.e. prescribed tempera-
ture, prescribed heat flux, insulated, convection or radiation boundary conditions.

Fig. 8.12 shows some common boundary conditions encountered in practice:

Finite difference equations for the boundary situations shown in Fig, 8.12 are given in Table 8.2.

Ax -
_,\ 14_ .
T m,n+1 T
i _ m.n m, n T
i ‘%/ 7 T o
> T h,Tﬂ( m-1,n h T
N [

Tm-1ln L2 meto Tm-t.n :
hT, T
T T mna-1
mn-9 m, -1
(a) node at intemal (b) node at plane surface {c) node at external
comer with convaction with convection corner with convection

FIGURE 8.12 Finite difference representation for two-dimensional canduction-different boundary
conditions

Exumple 8.1, Consider the L-bar shown in Fig. Example 8.11, with constant k (= 20 W/({mC)} and no internal heat
generation. Its left and right sides are insulated and the bottom surface is maintained at 150°C at all times. If at time 7=
0, the top surface is suddenly exposed to a fluid at 20°C with a convection coefficient of 5¢ W/ {m?C), determine the
temperature at the node 3 after 1, 2, 5, 10, 15 and 20 min. Use explicit formulation and take Ax = Ay = 1 cm. Take thermal
diffusivity of the body as 3.2 x 107% m?/s.
Solution.
Data:

Ax=001m Ay:=001m T;= 20°C  h =50 W/HmC) k=20 w/{mC) a:=32X 1078 m?/s

Nodes are represented by numbers 1, 2, ..., 7. Elemental volume pertinent toeach node is also marked around it and
numbered a, b, .., T

We shall develop finite difference equations for each node by writing the energy palance for the corresponding
elemental volume around that node.
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TABLE 8.2 Summary of transient, finite difference equations for different boundary conditions
{g = heat flux, h = convection heat transfer coefficient k = thermal conductivity, no internal heat generation,
and Ax = Ay}

" Situation Finite difference equation
{with Ax = Ay, no heat generation)

(1) Node &t an internal corner with convection, Fig. 8.12,a:
Explicit method:

(T ot = %-For[z(Tm ne ) F 2T (T ) AT o Y+ 2.BiT ) + (1 —4-Fo-~:--Fo~BiJ-(Tm'n)f .(8.71)
Stability criterion for above:
Fo(3+ Bi)< ; ...(B.72)
Implicit method:
[1+4-Fo-(1+%]]-(rm, = T e (T T+ 2T e 20Ty - 61 FoT,

- (Tm, n)l'= 0 -(8.73)

2. Node at a plane surface with convection Fig. 8.12b:
Explicit method:

(T, ' = FOR2 ATy oY + (T s oY + (Toney) +2BiT,]+ {1 -4.Fo- 2-Fo-Biy (T, o .(8.74)
Stability criterion for above:

Fo(2+ Bi) < % (8.75)

Implicit method: _ . . _ _

[ +2F0 @+ BN (Tn "'~ FOf2 AT 1, '+ (T + (T V1= (T ) + 2.BiFO.T,  .(8.76)
3. Node at a plane surface, Insulated:
To obtain finite difference eguation or stability criterion for an insulated surface {or a surface of thermal symmetry), set
B;=0 (i.e. h=0) in Egs. 8.74, 8.75 or 8.76.
4. Node at exterior corner, with convection Fig. 8.12¢:
Explicit method:

(T A 2<Fo-[(Tm_1. ,.,)"+ (Tm_ ,,_1)’+ 28T+ (1-4-Fo- 4-Fo-B.0-(T,,,' ,,)’ .{8.77}
Stability criterion for above:
Fo(1+8h< % ..{8.78)
Implicit method:
A+4Fo(1+B8)(Tn " —2F0 Ty Y+ (T o) = (T o) + 4-Bi-Fo. T, ..(8.79)
Convection Ax=Ay=1¢cm
Yy
T h = 50 W/(m’C)
Insulated 1 a KTE = 20°C
/
, Insulated
IQ 5 ’h 6 ||< 41']7/ nsulate
f i i ‘P
X
\ T=150°C

R FIGURE Example 8.11 Finite difference representation for two- dimensional conduction-nodal network
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For node 1:
Elemental volume to be considered is 1/4 volume, 1-a-b-c-1. This node is subjected to convection from top and conduc-
tion from right and conduction from bottom.

From left surface, there is no heat transfer, since it is insulated.
Considering all heat flows to be flowing into the elemental volume, and writing an energy balance, we get:

i _ i ivl i
h{ﬂ-l)(rﬂ— ) +k-[ﬂ'1)-u ke { ) LT _,Ax Ay T
2 2 Ax 2 Ay 2 2 AT

Remembering that Ax = Ay, and dividing by k/4 and simplifying;:

2.h- . ) . ) . T+ i
AT s 2@y - T e 2mi-Th =
1]

Le. T{"'= (1—4-Fo—2-Fo-h A"]-T{ﬂfo-(ﬁ +T;+"'f"‘-r,,J .(a)

Eq. a is the explicit difference equation for temperature of node 1 at (i + 1)st time step.

For node 2: '

Here, elemental volume to be considered is 1/2 volume, c-b-e-1. and, energy balance can be written as we did for node 1.
However, since the surface is insulated, it is easier to use the mirror image concept and consider the node 2 as an

internat node. So, to the left of node 2, we have T, mirror image of temperature of node 4. Then, considering 2 as

internal node, we get difference eqn for node 2, from Eq. 8.6%:

(Tm n)l tl= Fo- [(Tm 1, n) + (Tm +1, n) + {Trn n+ 1) + (Tm n- 1)] + (1 -4 FO) (Tm n) (869)
Le. Ti*' = (1 -4-Fo)-T; + Fo- (T + Ti+ T, + 150) (b
Eq. b is the explicit difference equation for temperature of node 2 at (i + 1)st time step.
For node 3:

This is corner node with convection. Elemental volume to be considered is 1/4 volume, a-3-d-b.
Applying energy balance, with all heat flow lines into the volume:

i i i+l
h. f“_’i+_] (T,-T3) + Ay T‘ T + k.g.T“ 5 :p.H.Ay C, u
2 2 Ax 2 Ay 2 2 Ar

Dividing by k/4 and simplifying,

it (1—aro—aro EAX) i v opo [T e T 42 BAT e}
3 3 1 k

Eq. ¢ is the explicit difference equation for temperature of nede 3 at (i + 1)st time step.

For node 4:
This is an internal corner node with convection on two sides. Elemental volume to be considered is 3/4 volume, g-f-e-b-
d-4.

Again, applying energy balance, with all heat flow lines into the volume:

h ﬁ+—J(T T+ k R A LT 10T, kAyT L U PO
2 2 Ax Ay Ax 2 Ay

p_3-Ax<Ay‘C -

Dividing by 3k/4 and simplifying,

4 o Ar
T, "= [1 4.Fo -4 Fo- hsAka i+ % (4-T{ +4-150+2. T4 +2.T; +4-h':‘x-n} ~.(d)

Eq. d is the explicit difference equation for temperature of node 4 at (i + 1)st time step.

For node 5:
This is a surface node with convection. Flemental volume to be considered is 1/2 volume, g-f-i-h-g.
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" Again, applying energy balance,

‘ i i i A i e iel _epi
b (T -Th 4 [ AT E ) a0 (A T =T, —paxttc B oh
2 Ax Ay 2 Ax 2 Ar

Dividing by k/2 and simplifying,

Té*l= (1—4-Fo-2-Fo-h'Ax]-T5‘ + Fo-[r; +T, +2.150+2-h"?x‘:r,‘) ()
Eq. e is the explicit difference equation for temperature of node 5 at (i+1)st time step.
For node 6:
This is identical to node 5. So, we get, by shifting node numbers by 1:
TS+ = (1—4-Fo— 2-Fo- h'Ax) T+ Fa{T; +T +2-150+ 2. h-Ax -T,,J w(f)
Eq. f is the explicit difference equation for temperature of node 6 at (i+1)st time step.

For node 7: . L
This is corner node withrtonduction from left, convection on the top, insulated on the right, and conduction from down.
Elemental volume to be considered is 1/4 volume, k-7-pj,

Writing the energy balance, remembering that right surface is insulated, and all heat flow lines into the volume, we
get:

i i i i+l i
k.ﬂ.i___TL+h.é£.(]‘ﬂ_]"7‘)+0+k.£.ﬂ& = __f‘_x.ﬂ.cp.u
2 Ax 2 2 Ay 2 2 At
Dividing by k/4 and simplifying,
Ti+l= (1-4.an2.pg.h’ﬁx].r,f + 2.po{T; +150 + h‘:I‘T,) -Lg)

Eq. g is the explicit difference equation for temperature of node 7 at (i+1)st time step.
Now, we have to fix the upper limit of A from stability criterion. To do that, we observe that in Egs. a to §, the
smallest coefficient of T,, is in Eq. ¢, i.e. (1 - 4 Fo -4.Fo.h.Ax/k) must be positive. Putting this condition, we get:

1-4Fo-4F0. BT 5
. 1
1.e. Fo = m
k
2
ars — B0
4-af~(1 + h-Ax)
k
ie. AT<7622s
This means that a time step less than 7.622 s has to be employed from stability criterion. Let us choose:
AT =55
a-AT
Then, Fo:= —— e Fo=016
(Ax)
Substituting all relevant numerical values in Eq. a to f, we get the explicit difference equations as:
Ti*' = 0352 T + 0.32-(Ty + TS + 0.5) (&)
T;* 1 =036-T; + 0.16-(T{ + T + T{ + 150) «{b)
Ti7 = 0344 T + 032.(T + TS + 1) A}
T{ "' = 035467 T/ + 0.05333-(4-T§ + 2-T4 + 2-T4 + 602) Ad)
Ti*! = 0352 T + 0.16-(T{ + T, + 301) -(e)
T4 =0.352. T/ + 0.16-(T) + T¢ + 301) ol
T)*1=0352.T; + 0.32(T/ + 150.5) )
Initial temperature of the plate at r= 0 and i = 0, is given as 150°C.
ie. T TP =T) =T =TS =T = T = 150°C
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Therefore, at the next time step i = 1, i.e. at Az= 5 s, temperatures at nodes 1 to 7 can be explicitly calculated from
Egs. a to g. Then, calculate temperatures at the nodes for next time step of A7= 10’5, using the same Eqs. a to g, since the
temperatures at the preyious time step are already calculated. Thus, march in time till we reach the time limit specified
in the problem. Note that for 1 min. there are 12 time steps of 5 s each. T

This calculation is easily done in Mathcad. We slightly change the notation for convenience in calculation: we write
the superscripts as subscripts to work with matrix notation, as shown below.

In the small Mathcad program given below, LHS defines a function Temp(n) where 1t is the no. of time steps, which
we can specify. Output is a vector containing step number total time elapsed, and node temperatures Ty Tas e Toe

On the RHS, first 7 lines define the initial temperatures at the nodes, all equal to 150°C.

Then, a ‘for loop” evaluates the finite difference Eqs. a to g, each ‘new’ node temperature being calculated in terms
of the temperatures calculated in the previous time step. Here, the no. of ime steps, ‘1’ can be changed since it is
included in function definition on the LHS.

Temp(n)=| T1, <150

T2, « 150

T3, <150

T4, « 150

T5, « 150

T6, <150

T7, « 150

forie0,...,n

TLi.q —0.352-T1, +0.32:(T3; + T2, +0.5)
T2,,,<036T2; + 0.16-(T4; + T4, + T, +150)
T3, «0.304-T3; + 0.32(T1; +T4; + 1

T4,,, «0.35467-T4; +0.05333-(4-T2; + 2.75, +2-T 3+ 602)
T5,,, < 0.352.T5; + 0.16:(T4; + T6, + 301)
Té,. , <-0.352-T6, + 0.16-(T5; + I7; + 301}
T7, 1 ¢ 0.352.T7; +0.32-(T6; + 150.5)

li 5-i T1, T2, T3, T4; 5, T6; T7}]

Check: Temp{0) = [0 O 150 150 150 150 150 150 150] (starting at time = 0
i = step no.; Ar= one time step = 5 s; 7 = time duration from beginning = i. A7, 8
: i t Ty T, T, Ty Ts Ts T
Temp(12) = {12 60 142,823 146.402 141.661 145.968 146.68 146.827 146.85]
Temp{24) = {24 120 141.573 145.591 140.488 145.326 146.442 146726 146.78]
Temp{60) = [60 300 141.331 145.434 140.261 145.203 146.398 146.708 146.729]
Temp(120) = [120 600 141.33 145.434 140.26 145202 146398  146.708 146.769]
Temp{180) = [180 900 141.33 145.434 14026  145.202 146.398 146.708 146.769]

Temp(240) = [240 1.2-10° 141.33 145434 140.26 145202 146398  146.708 146.769]
In the above Table, first column gives step aumber second column gives the time elapsed (seconds), and 5th column
gives the temperature of node 3. We get:

Time {min} Temperature of node 3 (deg.C)
0 150
1 141.661
2 140.488
5 140.261
10 140.26
15 140.26
20 14(.26

i.e. steady state is reached after about 5 min. from start up.
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8.9 Accuracy Considerations

As mentioned earlier, numerical methods yield approximate values as compared to ‘exact analytical solutions’.
This is due to the following errors inherent in numerical methods:

(i) Discretization error This is due to the approximation used in formulation of numerical solutions i.e. due
to the error involved in writing the derivatives in terms of differences. Remember that we assume the
temperature variation between adjacent nodes to be linear, which may not be so in practice. This is
equivalent to considering only first two terms in the Taylor series expansion of the temperature at the
given node. Generally, discretization error is cumulative; but if the function changes sign, it is possible
that the errors may cancel. Discretization error is proportional to the square of the time step A7 {or Ax).
Therefore, smaller the mesh size, smaller the discretization error.

(ii} Round off error This is due to the fact that computer retains only 15 digits accuracy in a calculation (in
double precision) and the rest of the digits are either chopped off or rounded off. When this is done
continuously for a large number of calculations, error is carried over to successive calculations and the
cumulative error can be significant. Obviously, the round off error is proportional to the total number of
computations performed, and reduces as the mesh size increases.

Therefore, while aiming at reducing the error invalved in numerical methods, we note that we have to deal
with two opposing effects: if the mesh size Ax (or time step size A7) is decreased, discretization error is reduced,
but the round off error increases since the total number of calculations increases. So, practical way of approach-
ing the solution is to start with a coarse mesh and then gradually refine the mesh size and observe if the results
converge.

As a note of caution, it should be pointed out that getting an accurate solution of the nodal equations may
not necessarily mean that an accurate solution to the physical problem has been obtained, if the formulation of
nodal equations itself is erroneous. Therefore, as a check, some sort of energy balance using the final solution is
also recommended.

8.10 Summary

While considering heat transfer in solids with complicated geometries and boundary conditions, and tempera-
ture dependent thermal properties, it is difficult to formulate ‘exact’ analytical solutions. In such cases, numerical
methods are adopted to determine the temperature distribution and heat transfer rates.

In this chapter, we first considered the numerical sclution of one-dimensional steady state conduction in
cartesian, cylindrical and spherical coordinates. Then, two-dimensionai conduction in cartesian coordinates was
studied. Finally, numerical solutions for one-dimensional and two-dimensional transient conduction in cartesian
coordinates was explained.

‘Finite difference method” involves converting the partial differential equations of heat transfer into a set of
coupled algebraic equations and then solving them. Analytical solution gives the temperature at any point in the
medium; however, in numerical method, we divide the volume into discrete subvolumes and each subvolume is
represented by a ‘node’ and the temperatures are determined at these discrete nodes.

Method adopted to convert the differential equations into a set of algebraic equations is to write an energy
balance at each node. As a rule, all heat flow lines are considered to be flowing inte the node considered. While
writing the energy balance for a steady state problem, sum of all heat flows into the node must be equal to zero.
Nodes at the boundaries for different boundary conditions are also handled in the same way, i.e. by writing
energy balances at the boundary nodes. Care must be taken to see that at any boundary node, the volume consid-
ered must be the one appropriate to that node (i.e. half volume for a surface node, % volume for an external
corner node, % volume for an internal corner node etc.)

Solution of the set of algebraic equations may be obtained by ‘direct methods’ or by ‘iteration methods’.
Direct methods are: Gaussian elimination method and Matrix inversion methods. Example of iteration method is
the popular ‘Gauss - Siedel iteration method” where one starts with the guess values of temperatures. These
methods were explained briefly in this chapter.

While considering the numerical method for transient conduction, we again adopt the technique of writing
the energy balances at the nodes; however, now we say that net energy flowing inte a node results in a variation
of the energy content of the subvolume represented by that node during the time interval Az In the ‘explicit
method’, heat transfer and heat generation terms are considered at the ‘previous time step’ i, whereas in the
‘implicit method’, these terms are considered at the ‘new time step’, i + 1. In the explicit formulation, tempera-
tures are obtained in a straightforward manner in terms of the values obtained at the previous time step. How-
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ever, explicit method suffers from a disadvantage that we cannot use any time step we like and the solution
becomes unstable unless the time step is below a particular value as dictated by ‘stability criterion’. In implicit
formulation, there is no such limitation on the time step i.e. any larger time step can be used resulting in smaller
number of total calculations; however, at each step, all the equations have to be solved simultaneously.

While discussing the accuracy of the numerical solution, it was pointed out that smaller the mesh size, better
the accuracy; but, now the total number of computations will be more and this introduces larger round off errors.
Further, from a practical point of view, when convection boundary conditions are involved {which is invariably
the case), the uncertainty in the value of heat transfer coefficients itself may be of the order of 20% and it is quite
likely that the thermal properties may also be in error by 10 to 15%. Therefore, there is no point in having an
unduly fine mesh. So, practical way of approaching the solution is to start with a coarse mesh and then progres-
sively refine the mesh size, observing that the temperature values at given nodes go on converging.

Questions

1. When is a numerical solution adopted for a problem? What are its advantages and limitations?

2. Mention the methods used to convert partial differential equations of conduction heat transfer into finite differ-
ence equations.

3. Explain the energy balance procedure to obtain the finite difference formulation of one-dimensional conduction
problem in cartesian coordinates.

4. Explain the energy balance procedure to obtain the finite difference formulation of one-dimensional conduction
problem in cylindrical and spherical coordinates.

5. Explain the procedure of writing finite difference equation for an insulated boundary.

6. Explain the ‘direct’ and ‘iterative’ methods used for the solution of a system of algebraic equations.

7. ‘Heat transfer problems involving variable thermal conductivity and radiation boundary conditions are difficult
to handle’ - explain this statement.

8. Give two examples of two-dimensional conduction where numerical methods are employed conveniently.

9. Finite difference formulation for a general interior node in a medium is given by:

qg'(AI)2 _ T, ot -‘T,,,l

m

Tmf‘l,n+Tm‘v—1,r!*"]—m.wfl+Tm,n—l_4'Tm',n+ k Eo

(i) Is the heat transfer in this medium steady or transient”
(ii) Ts there heat generation in the medium?
(iii) Is the heat transfer one, two or three-dimensional?
(iv) Is the nodal spacing constant or variable?
{(v) Is the thermal conductivity of the medium constant or variable?
10. Explain the method of handling an irregular boundary while writing finite difference equations.
11. How does the procedure of finite difference formulation for transient conduction differ from that for steady state
conduction?
12. Explain the principle of getting ‘explicit’ and ‘implicit’ formulations for transient conduction.
13. Explain the ‘stability criterion” when using explicit formulation for one-dimensional and two-dimensional tran-
sient conduction.
14. What are the relative advantages and disadvantages of explicit and implicit formulations?
15. Explain the types of errors inherent in numerical methods. How to reduce these errors?
16. How does the step size influence the discretization and round off errors?

Problems

One-dimensional steady state conduction:

1. A large plane wall of thickness L = 0.5 m, thermal conductivity k = 14 W/(mC), and surface area A = 20 m?, has
its left face maintained at a constant temperature of 150°C and the right face is exposed at ambient at 20°C, with
a heat transfer coefficient of i = 20 W/(m*C). Assuming a nodal spacing of 10 cm, and steady one-dimensional
heat transfer, formulate the finite difference equations for all nodes and solve them to find the temperatures at
all nodes. What is the rate of heat transfer through this wall?

2. A plane wall of thickness 0.1 m and k = 20 W/{mC) has uniform heat generation of 0.35 MW/m®. 1t is insulated
on one side and the other side is subjected to convection heat transfer with a fluid at 90°C flowing with a heat
transfer coefficient of 550 W/(m?C). Determine the temperature distribution in the wall by finite difference
method.
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A 30 mm diameter copper cable carries 200 A and has an electrical resistance of 5 milli-chms per metre. Cable
loses heat to the ambient air at 15°C with a convection coefficient of 20 W/(m’C). Determine the temperature
distribution by numerical method. Compare the results with exact solution.

A 0.6 cm diameter solid aluminium sphere (k = 200 W/(mC) has an energy generation rate of 10° W/m®. Sphere
loses heat from its cutside surface to an ambient at 25°C by convection with a heat transfer coefficient of 150 W/
(m’C). Calculate the steady state radial temperature distribution by the finite difference method by dividing the
region into 6 elements, each of radial thickness Ar = 0.05 cm. Compare the results with exact solution.
Consider a straight fin of circular cross-section, 5 mm in diameter and 50 mum long (k = 14 W {mC)). Surface of
the fin is exposed to ambient air at 20°C with a convection heat transfer coefficient of 80 W/(m"C). Base of the
fin is maintained at 150°C. Assuming the tip of the fin to be insulated, determine the temperature distribution in
the fin, heat transferred and the fin efficiency by finite difference method. Use 5 equal subdivisions along the
length. Compare your results with the exact solution.

Consider an aluminium straight fin of square cross-section (4 mm x 4 mm)}, 2 cm long (k = 200 W (mC)). Surface
of the fin is exposed to ambient air at 20°C with a convection heat transfer coefficient of 25 W/ (m?C). Base of the
fin is maintained at 150°C. Assuming that the tip of the fin is also losing heat by convection, determine the
temperature distribution in the fin, heat transferred and the fin efficiency by finite difference method. Use 4
equal subdivisions along the length. Compare your results with the exact solution.

Two-dimensional steady state conduction:

7.

10.

11.

12,

13.

A long rod of square cross-section (3 cm x 3 cm), has its top and bottom surfaces maintained at 0°C while the left
and right surfaces are maintained at 50°C and 100°C respectively. Determine the steady state temperature distri-
bution in the rod, using a node spacing of 1 cm. .

A long rod of square cross-section (2 cm x 2 cm), has its top surface maintained at 120°C while each of the other
three surfaces is maintained at 80°C. Determine the steady state temperature distribution in the rod, using a
node spacing of 0.5 cm. Check the results with analytical solution.

Refer to the L-bar shown in Fig. Problem 8.9. )

If the thermal conductivity of the material is 15 W/(mC), find out the temperatures at all the nodes. (Note: Ax =
Ay =1 cm}

Convection Ax=Ay=1cm
y
2
h=30W/(mC
Insulated 1 T a T,=20°C )
d
4 9 5\h 6 k Insviated
f i ] p
X
N T=200°C

FIGURE Problem 8.9 Two-dimensional condudion in a L-bar

If in the L-bar shown in Fig. Problem 8.9 above, there is 2 heat generation at a rate of 1 MW /m?, all the other
data remaining the same, determine the temperatures at all nodes.

if in the L-bar shown in Fig. Problem 8.9 above, if the right face is also subjected to convection conditions of the
top surface, all the other data remaining the samne, determine the temperatures at all nodes.

Consider a long bar of rectangular cross-section (6 cm wide x 9 cm height), with a thermal conductivity of 14
W/(mC). Top surface of the bar {with 60 mm width} is exposed to air at 90°C with a convection coefficient of 80
W/(m?C), while the other three surfaces are maintained at 35°C. Using a nodal spacing of 1.5 cm, determine the
steady state temperature distribution in the bar and the heat transfer rate per unit length of the bar.

A gas duct made of fire brick, (k = 1 W/(mC)), has outer dimension of 4 m x 4 m. Gas passage areais2mx 2 m,
centrally located. Inner walls are at a temperature of 900°C and the outer walls are at 40°C. Determine the
temperature distribution in the wall and the heat transfer rate per metre length.
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14.

One-dimensional transient conduction:
15.

16.

17.

18.

Consider two-dimensional steady state conduction in a region, y
2 cm x 2 em, with the boundary conditions as shown in Fig. .
Problem 8.14. For the material, k = 60 W/ (mC) and there is
internal heat generation at a rate of 10° W/m>. Using finite dif-
ferenice method, calculate the unknown node temperatures.

A very thick copper plate {k = 386 W/(mC), aa = 11 x 10-° m?/

§) is initially at 400°C. Suddenly, its surface temperature is T=0°C
lowered to 20°C. Considering the plate as semi-infinite plate

and using a mesh size Ax = 1 cm, calculate the temperature at x

=5 cm from the surface, 2 min. after lowering the surface tem-

perature.

A water main is buried below the surface of soil which is ini-

tially at an uniform temperature of 25°C. Suddenly, the surface
temperature drops to ~30°C and is maintained so for a period

of 60 days. Determinel the dt?pth at which the water rpains FIGURE Problem 8.14 Two-dimensional
must be placed to avoid freezing of water. Take properties of
soil as: p = 2050 kg/m?, k = 0.52 W/(mC), C, = 1840 J/(kgK), &
=0.138 x 107 m?/s. (Hint: Consider the soil as semi-infinite medium; calculate temperatures at distances upto 6
m below the surface and find the depth at which the temperature would be 0°C, by interpolation).

A 6 cm thick steel plate (@ = 1.6 x 10~ m®/s, k = 60 W/(mC)), is initially at an uniform temperature of 250°C. It
is suddenly exposed to a cold air stream at 20°C on both the surfaces, with a heat transfer coefficient of 350 W/
( m’C). Determine the centre plane temperature at 7= 5, 10 and 15 min. from starting of cooling. Use explicit
formulation with a mesh size of Ax = 1 cm.

Two ends of a steel rod 1.2 cm diameter and 2.5 m long, are maintained at 250°C and 50°C and the curved
surface of the rod is perfectly insulated. Suddenly, an electric current is passed through the rod, causing heat '
generation in the rod at an uniform rate of 3000 W/m’. Find the temperature distribution in the rod for the first
five time increments. Take k = 35 W/(mC) and @ =15 x 10° m’/s.

Insuiated

steady state conduction

Two-dimensional transient conduction:

19.

20.

The L-bar shown in Fig. Problem 8.9 is initially at an uniform temperature of 200°C. Its top surface is suddenly
exposed to convection with an air stream at 20°C with a convection coefficient of 80 W/ (m"C). Bottem surface is
maintained at 200°C throughout and the left and right surfaces are insulated as shown. Taking k = 15 W/(mC)
and a= 3.2 x 107 m%/s, calculate the temperature of node 3 after 1, 3, 5, 10 and 30 min. Use explicit formulation.
A steel bar of 3 cm x 3 am cross-section is initially at an uniform temperature of 500°C. (&= 1.0 x 107° m?%/s, k =
35 W/(mC)). Suddenly, all the 4 surfaces of the bar are exposed to an air stream at 20°C with a heat transfer
coefficient of 120 W/(m’C). Using explicit formulation and a mesh size of Ax = Ay = 0.5cm, caiculate the centre
temperature at =1, 5 and 10 min. after the start of cooling. (Hint: Use symmetry consideration—consider only
a quarter of the cross-section).
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CHAPTER

Forced Convection

9.1 Introduction

In the previous chapters, we studied about conduction heat transfer, where heat transfer was a molecular phe-
nomenon and was considered mainly in solids; convection was mentioned only in passing and was considered
only as a boundary condition while analysing conduction heat transfer.

In convection heat transfer, there is a flow of fluid associated with heat transfer and the energy transfer is
mainly due to bulk motion of the fluid. When the flow of fluid is caused by an external agency such as a fan or
pump or due to atmospheric disturbances, the resulting heat transfer is known as ‘Forced convection heat trans-
fer’; when the flow of fluid is due to density differences caused by temperature differences, the heat transfer is
said to be by ‘Natural (or free) convection’. For example, if air is blown on a hot plate by a blower, heat transfer
occurs by forced convection, whereas, a hot plate simply hung in air will lose heat by natural convection.

In this chapter, we shall study about forced convection heat transfer. Since there is a flow of fluid involved
in convection heat transfer, it is clear that the flow field will influence the heat transfer greatly. Mathematical
solution of convection heat transfer will, therefore, require the simultaneous solution of differential equations
resulting by the application of conservation of mass, conservation of momentum and conservation of energy,
under the constraints of given boundary conditions. For a three-dimensional fluid flow, mathematical solution of
the resulting differential equations is a formidable task and it is usual to make many simplifying assumptions to
get a mathematical solution. Still, it must be stated that exact mathematical solutions, even for simple convection
heat transfer cases, are rather complicated and it is common practice to resort to empirical relations for solutions
of problems involving convection heat transfer. These empirical relations are obtained by researchers after per-
forming large number of experiments for several practically important situations and are presented in terms of
non-dimensional numbers.

In this chapter, we shall first describe the physical mechanism of forced convection and then mention about
the convective heat transfer coefficient and various factors affecting the same. Then, we shall discuss about veloc-
ity and thermal boundary layers. Application of conservation of mass, momentum and energy in respect of the
boundary layer will be demonstrated next. We shall not rigorously solve these equations, but will only mention
the methods of solution, since our emphasis will be on practical solutions with the use of empirical relations.
Then, we present several empirical relations to determine friction and heat transfer coefficients for flow over
different geometries such as a flat plate, cylinder and sphere for flow under laminar and turbulent conditions.
Finally, flow inside tubes will be considered and determination of heat transfer coefficient by analogy with the
mechanism of fluid flow will be explained.

9.2 Physical Mechanism of Forced Convection
Consider a hot iron block whose surface is at a temperature T,. Let this surface be cooled by a fluid at a tlempera-
ture T,, flowing over its surface at a velocity LI, as shown in Fig. 9.1.

We know that heat will be carried away from the hot iron block by the flowing fluid and the block will cool.
We also know that if the velocity of the fluid is increased, more heat is carried away and the block will be cooled
faster. For the purpose of analysis, we quantify the preceding statement by a dimensionless number called,
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